![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Soil science, sedimentology
This textbook presents the concepts and processes involved in the soil-plant-atmosphere system as well as its applications in the water cycle in agriculture. Although reaching the frontier of our knowledge in several subjects, each chapter starts at the graduation level and proceeds to the post-doctoral level. Its more complicated subjects, as math and physics, are well explained, even to readers not well acquainted with these tools. Therefore, it helps students read, understand, and developing their thoughts on these subjects. Instructors also find it an easy book with the needed depth to be adopted in courses related to Soil Physics, Agricultural Management, Environmental Protection, Irrigation and Agrometeorology. It serves also as "lexicon" to engineers and lawyers involved in agricultural, environmental cases.
Collapsing engineering soils are a formidable hazard around the world. These difficult materials also include some of the world's most fertile agricultural soils, fostering dense human populations which are therefore increasingly at risk. Despite an impressive literature on the engineering aspects of collapsing soils, these materials are coming under increasing scrutiny by scientists in other fields. This is most evidently the case with soil scientists, stratigraphers and sedimentologists. Past earth surface conditions have a direct influence on the detailed behaviour of collapsible soils: as a complement, these materials also provide detailed data on changing global climates. The selected papers presented here highlight the common ground between three scientific groups with a vested interest in a better understanding of collapsible soils.
In response to low iron availability in the environment most microorganisms synthesize iron chelators, called siderophores. Bacteria and fungi produce a broad range of structurally diverse siderophores, which all show a very high affinity for ferric ions. "Microbial Siderophores" presents an up-to-date overview of the chemistry, biology and biotechnology of these iron chelators. Following an introduction to the structure, functions and regulation of fungal siderophores, several chapters focus on siderophores of pseudomonads. Here, the technique of siderotyping, which has proved to be a rapid, accurate and inexpensive tool for pseudomonad characterization and identification, is described. Further, the biological significance of siderophores of symbiotic fungi and the possible role of siderophores in pathogenesis are discussed. In addition to methodological approaches, chapters on the biotechnological production of siderophores and their application in promoting human and plant health are included.
This thoughtful and provocative book provides a concise, up-to-date presentation of how current and projected future phosphorus scarcity will affect legume growth and their symbiotic nitrogen-fixing capabilities. It is a timely examination of the physiological and molecular responses of nodules to phosphorous deficiency in attempt to identify common principles. Students and researchers in the many disciplines related to crop productivity will find this title an exciting contribution in the area of plant stress physiology. The knowledge in this volume can also aid plant breeders, particularly through new methods of genetic engineering, in developing unique and adaptive cultivars with higher symbiotic efficiency. The awareness of the rapidly rising world population must translate into a parallel increase in agricultural production in order to sustain the growing population both now and in the future. Hence, the demand for food crops to produce proteins and vegetable oil for human consumption is going to increase considerably during the coming years. The essential role of legumes in agriculture is well-recognized, given the abundant levels of proteins and oils found in plants along with their enormous contribution to the sustainability of agricultural systems and human health. The capacity of legumes to fix nitrogen (N2) in partnership with rhizobia provides an input-saving and resource-conserving alternative, thereby reducing the need for chemical fertilizers while enhancing overall crop productivity. The use of N2-fixing legumes to produce plant proteins results in a substantial decrease in the consumption of fossil fuels and therefore also in the agricultural effects to global warming. However, a major constraint to legume production is low soil phosphorus (P) availability, considering that an overwhelming majority of the world's soils are classified as P-deficient. Low-P availability is especially problematic for legumes, since legume nodules responsible for N2 fixation have a high P requirement. Therefore, this book explains how nodule N2 fixation responds to low P availability, which is crucial for improving legume production and maintaining agricultural sustainability in the context of the global P crisis.
In the heart of Africa, a unique lake attracts the attention of scientists since the beginning of the 20th century. At the foot of the Virunga volcano chain, Lake Kivu harbors a vast amount of dissolved carbon dioxide and methane, making this lake the most dangerous lake on Earth. But the lake furnishes also many goods and services for surrounding populations and may soon become the most important energy supplier in the area. At the beginning of gas exploitation, the time has come for gathering the large amount of scientific information acquired during past and present research on Lake Kivu. The eleven chapters cover many aspects of the physics, geochemistry and biology of the lake, with a particular focus on the unique physical and geochemical features of the water column and on the ecological functioning of the surface waters. The impacts of the introduced fish species and the potential impacts of methane exploitation are also summarized. This multi-disciplinary book may also be used as an introduction to the limnology and biogeochemistry of large tropical lakes, as it covers various aspects of the physics, geochemistry, biology and ecology of the African Great Rift lakes. "
Research in Antarctica in the past two decades has fundamentally changed our perceptions of the southern continent. This volume describes typical terrestrial environments of the maritime and continental Antarctic. Life and chemical processes are restricted to small ranges of ambient temperature, availability of water and nutrients. This is reflected not only in life processes, but also in those of weathering and pedogenesis. The volume focuses on interactions between plants, animals and soils. It includes aspects of climate change, soil development and biology, as well as above- and below-ground results of interdisciplinary research projects combining data from botany, zoology, microbiology, pedology, and soil ecology.
This volume addresses the similarities and also the differences in the genomes of soil saprophytes, symbionts, and plant pathogens by using examples of fungal species to illustrate particular principles. It analyzes how the specific interactions with the hosts and the influence of the environment may have shaped genome evolution. The relevance of fungal genetic research and biotechnological applications is shown for areas such as plant pathogenesis, biomass degradation, litter decomposition, nitrogen assimilation, antibiotic production, mycoparasitism, energy, ecology, and also for soil fungi turning to human pathogens. In addition to the model organisms Neurospora and Aspergillus, the following species are covered providing a view of pathogens and mutualists: Trichoderma, Fusarium oxysporum, Cochliobolus heterostrophus, Penicillium chrysogenum, Rhizopus oryzae, Podospora anserina, and species belonging to Agaricomycetes, Archaeorhizomycetes and Magnaporthaceae. Ecology and potential applications have guided the choice of fungal genes to be studied and it will be fascinating to follow the trends of future sequencing projects.
Landslides and Engineered Slopes. Experience, Theory and Practice contains the invited lectures and all papers presented at the 12th International Symposium on Landslides, (Naples, Italy, 12-19 June 2016). The book aims to emphasize the relationship between landslides and other natural hazards. Hence, three of the main sessions focus on Volcanic-induced landslides, Earthquake-induced landslides and Weather-induced landslides respectively, while the fourth main session deals with Human-induced landslides. Some papers presented in a special session devoted to "Subareal and submarine landslide processes and hazard" and in a "Young Session" complete the books. Landslides and Engineered Slopes. Experience, Theory and Practice underlines the importance of the classic approach of modern science, which moves from experience to theory, as the basic instrument to study landslides. Experience is the key to understand the natural phenomena focusing on all the factors that play a major role. Theory is the instrument to manage the data provided by experience following a mathematical approach; this allows not only to clarify the nature and the deep causes of phenomena but mostly, to predict future and, if required, manage similar events. Practical benefits from the results of theory to protect people and man-made works. Landslides and Engineered Slopes. Experience, Theory and Practice is useful to scientists and practitioners working in the areas of rock and soil mechanics, geotechnical engineering, engineering geology and geology.
This volume will lay out the best methods for measuring net primary productivity (NPP) in ecological research. Primary productivity is the rate at which energy is stored in the organic matter of plants per unit area of the earth's surface. NPP is the beginning point of the carbon cycle, so our ability to accurately measure NPP is important. The book includes chapters for each of the critical biome types to offer special techniques that work best in each biome. For example, there are chapters that discuss grassland ecosystems, urban ecosystems, marine pelagic ecosystems, forest ecosystems, and salt marsh ecosystems, among others. All 26 LTER sites will be expected to collect and report data using these methods, but ecologists more generally should also find these methods useful and authoritative. Currently no standard methods or standards exist. Measuring NPP is fundamental to many ecosystem studies at thousands of sites, and having identified standards and methods would be extremely useful for comparing measurements among sites and for compiling a broad scale understanding of the environmental, biological, and nutrition controls on NPP. This book would resemble the Standard Soil Measurement volume in the LTER series in that it reaches well beyond any single LTER site to apply to any ecosystem. It should be rather more widely used than the soil measurements volume, in that measuring productivity is so fundamental to any ecological analyses as well as agronomy, forestry, fisheries, limnology and oceanography.
Nutrient Use Efficiency in Plants: Concepts and Approaches is the ninth volume in the Plant Ecophysiology series. It presents a broad overview of topics related to improvement of nutrient use efficiency of crops. Nutrient use efficiency (NUE) is a measure of how well plants use the available mineral nutrients. It can be defined as yield (biomass) per unit input (fertilizer, nutrient content). NUE is a complex trait: it depends on the ability to take up the nutrients from the soil, but also on transport, storage, mobilization, usage within the plant, and even on the environment. NUE is of particular interest as a major target for crop improvement. Improvement of NUE is an essential pre-requisite for expansion of crop production into marginal lands with low nutrient availability but also a way to reduce use of inorganic fertilizer.
This book reflects the latest research results in computer modelling of landslide-induced debris flows. The book establishes an understanding of the initiation and propagation mechanisms of landslides by means of numerical simulations, so that mitigation strategies to reduce the long-term losses from landslide hazards can be devised. In this context, the book employs the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) to investigate the mechanical and hydraulic behaviour of granular materials involved in landslides - an approach that yields meaningful insights into the flow mechanisms, concerning e.g. the mobilization of sediments, the generation and dissipation of excess pore water pressures, and the evolution of effective stresses. As such, the book provides valuable information, useful methods and robust numerical tools that can be successfully applied in the field of debris flow research.
Evapotranspiration and its components (evaporation and transpiration) as a process is one of the basic terms of Earth's water balance; its importance is accented by the fact that transpiration is the vital element of the biomass production process. The second important property of evapotranspiration is its extreme consumption of solar energy, thus controlling the temperature of the atmosphere and creating favourable conditions for life. Evapotranspiration as an energy consuming process is also the connection between the energy and mass cycles of the Earth. Evapotranspiration is a process performing in the Soil-Plant -Atmosphere System (SPAS); therefore this book is presenting and quantifying it as a catenary process, describing transport of water in the soil, including root extraction patterns and methods of its evaluation. Transport of water through the plant and from the canopy to the atmosphere is also described and quantified. A variety of evapotranspiration (and its components evaporation and transpiration) calculation methods are described, starting from empirical methods up to the most sophisticated ones based on the solution of the transport equations of water and energy in the SPAS. The most important (and widely used) calculation method - modified Penman-Monteith method is described in details, ready to be used with data in the book only. Water balance method of evapotranspiration estimation as well as sap flow method description can be found in the book as well. The book can be used by hydrologists, biologists, meteorologists and other specialists as well as byecology students. Key themes: soil hydrology - evapotranspiration - hydropedology- plant physiology -water movement in soils -evaporation -transpiration Dr. Viliam Novak isa water resources scientist at the Institute of Hydrology of the Slovak Academy of Sciences in Bratislava (Slovakia)."
Fisheries genetics researchers will find invaluable the thirty-eight peer-reviewed contributions in this book, presented at the 20th Lowell Wakefield Fisheries Symposium "Genetics of Subpolar Fish and Invertebrates," held in May 2002 in Juneau, Alaska. Looming over concerns of lost fisheries stocks and persistent erosion of genetic variability are predictions of global warming, which may further tax genetic resources. One consequence is an increased reliance on genetic applications to many aspects of fisheries management, aquaculture, and conservation. The contributions in this book are important to modern fisheries science and genetics, and illustrate the evolution of the field over the past decade. The improved technology provides tools to address increasingly complicated problems in traditional applications and ecological and behavioral studies. The union between molecular and quantitative genetics, where many of the major questions about population structure and evolution remain unanswered, will also benefit from the new technologies.
This book deals with the concept of moments, and how they find application in subsurface hydrologic problems-particularly those dealing with solute transport. Both temporal and spatial moments are dealt with in some detail for a wide variety of problems. Several examples using experimental data, both from laboratory columns and field experiments, are provided to give the readers a clear idea about the scope of this method.
Accelerated degradation of soils and surface waters produce increasing problems in many parts of the world. Within this context, the book addresses the topic Application of Physically Based Soil Erosion Models in order to present some essential tools for improving land-use strategies and conservation measures. Over the last 20 years, the need for more accurate assessments of soil losses and sediment yields has led to the development of some highly complex, process-based soil erosion models. In 14 papers, specialists from 5 European countries, the USA and Brazil report on practical applications of these models and give insight into the latest developments. This book will help to implement state-of-the-art soil erosion prediction technologies within soil and water conservation planning and assessment. Hence, the book should be of special interest to agricultural and environmental engineers, hydrologists, soil scientists and geoscientists.
Biotechnology for Waste Management and Site Restoration covers: waste management - solid, gaseous, liquid; site restoration - radioactivity, organics, toxic metals; educational, economic, social and business aspects; and international collaboration. International collaboration is growing apace and many concrete projects have been started. The body of knowledge is growing. Over the long term, it is envisaged that this international collaboration will result in a long-term scientific and technological strategy, new technologies and alternative solutions, and practical implementations of biotechnology for the nuclear and industrial sectors of the economy.
This volume combines 10 years of accomplished research at the Pilauco site. The studies are focused on a variety of scientific areas including geological, sedimentological, geomorphological and paleobotanical topics, as well as paleontology of vertebrata and invertebrata, micropaleontology, archaeology, biochemistry, taxonomy, taphonomy, astrophysics and the development of some particular touristic aspects. In 18 chapters a variety of authors describe the excavation and investigation of this unique location. The book presents Pilauco as an example for the natural laboratory which can be found in South America, a testing ground for many of the hypotheses regarding migrations of animals and humans. In this context the study of topics, such as the paleozoography, the role of megafauna species for the architecture of the forests, the animal extinctions or the early human settlements, is extremely important on a global scale. The Pilauco site features paleontological and archaeological evidences and is contemporaneous with the Monte Verde site (~ 15,000 cal. yr AP). It is located 100 km north from Monte Verde and lies within the Intermediate Depression in northwestern Chilean Patagonia. It was discovered by chance in 1986 and has been excavated and investigated since 2007.
Taphonomic bias is a pervasive feature of the fossil record. A pressing concern, however, is the extent to which taphonomic processes have varied through the ages. It is one thing to work with a biased data set and quite another to work with a bias that has changed with time. This book includes work from both new and established researchers who are using laboratory, field and data-base techniques to characterise and quantify the temporal and spatial variation in taphonomic bias. It may not provide all the answers but it will at least shed light on the right questions.
This two-volume work is an effort to provide a common platform to environmental engineers, microbiologists, chemical scientists, plant physiologists and molecular biologists working with a common aim of sustainable solutions to varied environmental contamination issues. Chapters explore biological and non-biological strategies to minimize environmental pollution. Highly readable entries attempt to close the knowledge gap between plant - microbial associations and environmental remediation. Volume 1 focuses on important concepts such as biological remediation strategies to enhance soil quality at contaminated sites; synergistic influences of tolerant plants and rhizospheric microbial strains on the remediation of pesticide contaminated soil, and the role of plant types such as hyperaccumulator plants in the cleanup of polluted soils. Readers will discover mechanisms and underlying natural inherent traits of various plants and microbes for tolerating, excluding, remediating, accumulating, or metabolizing a variety of pollutants.
Sustainable Agriculture and the Environment describes the relationship of agriculture, society, nature and the environment, sustainable agriculture and sustainable development goals, management of biophysical resources for sustainable food and environment, traditional knowledge and innovative options, and social and policy aspects of sustainable agriculture. The book presents both environmental and economic principles, helping readers in the development and application of robust policy and good institutional systems that execute on sustainable agriculture practices for a healthy environment and to combat climate resilience.
This book elucidates the importance of long-term experiments in revealing evidence of soil fertility decline in Africa. An evaluation of experiences from on-going long-term experiments is given in broad detail. The first chapter explains the paradigm shift in soil fertility management then provides justification for long-term experiments before illuminating experiences from long-term experiments in East, West and Southern Africa. The second, sixth, eighth and ninth chapters give an in-depth account of crop management practices and soil fertility interventions in long-term trials within specific agro-ecological zones in West Africa. The rest of the chapters (chapter three, four, five and seven) address crop management, tillage practices and, organic and inorganic fertilizer applications in the context of long-term experiments in specific agro-ecological zones in East Africa.
This book presents a comprehensive scientific overview of the components and processes that underpin the biological characteristics of soil fertility. It demonstrates the interdependence of soil biological fertility with physical and chemical characteristics of soil. The book highlights the enormous diversity of life in soil and the resulting effects that management of land can have on the contribution of this diverse community to soil fertility in an agricultural context. It is becoming more relevant to explore soil biological processes in terms of their contribution to soil fertility. However, dilemmas do arise. Some agricultural chemicals may either overshadow or enhance biological contributions to soil fertility. The challenge is to select land management practices that improve the capacity of biological processes to contribute to soil physical and chemical fertility while increasing the sustainability of farming systems for particular soils and climates. Case studies of sustainable farming systems in relation to soil biological fertility are discussed and a global perspective is given about sustainability of soil management in relation to international agreements and environmental issues. This book is aimed at agricultural and environmental research scientists, agricultural extension officers and university students in a range of disciplines, including soil science (and subdisciplines of soil biology, root pathology, root symbioses, soil chemistry and soil physics), plant science, agronomy, animal science, land management and environmental science, who wish to gain an overview of the biological processes that contribute to soil fertility and have the potential to influence theproduction of food for humans and animals. It would also be of interest to leading farmers who are interested in understanding soil processes in their production systems. Soil biological fertility is often ignored but its central importance to sustainable use of land in agriculture makes it relevant to scientists and students in all disciplines related to agricultural production and environmental land management.
Chemical fertilizers have had a significant impact on food production in the recent past, and are today an indispensable part of modern agriculture. On the other hand, the oil crisis of the 1970s and the current Middle East problems are constant reminders of the vulnerability of our fossil fuel dependent agriculture. There are vast areas of the developing world where N fertilizers are neither available nor affordable and, in most of these countries, balance of payment problems have resulted in the removal of N fertilizer subsidies. The external costs of environmental degradation and human health far exceed economic concerns. Input efficiency of N fertilizer is one of the lowest and, in turn, contributes substantially to environmental pollution. Nitrate in ground and surface waters and the threat to the stability of the ozone layer from gaseous oxides of nitrogen are major health and environmental concerns. The removal of large quantities of crop produce from the land also depletes soil of its native N reserves. Another concern is the decline in crop yields under continuous use of N fertilizers. These economic, environmental and production considerations dictate that biological alternatives which can augment, and in some cases replace, N fertilizers must be exploited. Long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. The process of biological nitrogen fixation offers and economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources. In this book, we outline sustainability issues that dictate an increased use of biological nitrogen fixation and the constraints on its optimal use in agriculture.
With millions of different bacterial species living in soil, the microbial community is extremely complex, varying at very small scales. Microbe-driven functions are essential for most processes in soil. Thus, a better understanding of this microbial diversity will be invaluable for the management of the various soil functions. Nucleic Acids and Proteins in Soil combines traditional approaches in soil microbiology and biochemistry with the latest techniques in molecular microbial ecology. Included are methods to analyse the presence and importance of nucleic acids and proteins both inside and outside microbial cells, the horizontal gene transfer which drives bacterial diversity, as well as soil proteomes. Further chapters describe techniques such as PCR, fingerprinting, the challenging use of gene arrays for structural and functional analysis, stable isotope probing to identify in situ metabolic functions, and the use of marker and reporter genes in soil microbial ecology. |
You may like...
Agricultural Soil Sustainability and…
Sunita Kumari Meena, Ademir de Oliveira Ferreira, …
Paperback
R3,934
Discovery Miles 39 340
Applications of Biosurfactant in…
Dr. Inamuddin, Charles Oluwaseun Adetunji
Paperback
R4,442
Discovery Miles 44 420
Objective Soil Science
Raghavendra M Reddy, Prasad Siva P N, …
Hardcover
Formulas and Computations in Agriculture
Brajendra, A. K. Vishwakarma, …
Hardcover
R2,492
Discovery Miles 24 920
|