![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Structure & properties of the Earth
In the first half of the twentieth century, when seismology was still in in its infancy, renowned geologist Bailey Willis faced off with fellow high-profile scientist Robert T. Hill in a debate with life-or-death consequences for the millions of people migrating west. Their conflict centered on a consequential question: Is southern California earthquake country? These entwined biographies of Hill and Willis offer a lively, accessible account of the ways that politics and financial interests influenced the development of earthquake science. During this period of debate, severe quakes in Santa Barbara (1925) and Long Beach (1933) caused scores of deaths and a significant amount of damage, offering turning points for scientific knowledge and mainstreaming the idea of earthquake safety. The Great Quake Debate sheds light on enduring questions surrounding the environmental hazards of our dynamic planet. What challenges face scientists bearing bad news in the public arena? How do we balance risk and the need to sustain communities and cities? And how well has California come to grips with its many faults?
This book is a collection of 22 selected papers from the homonymous Conference held in September 2003 Milos, Greece. The aim of the conference was to serve as a forum for the presentation and constructive discussion of the state-of-the-art and emerging issues on the South Aegean Volcanic Arc.
This collection of works spans the breadth of the field of geology, with many titles coming from the Binghamton Symposia in Geomorphology series. Written by some of the world's leading experts in their fields, this set is a key reference resource.
Collins Big Cat supports every primary child on their reading journey from phonics to fluency. Top authors and illustrators have created fiction and non-fiction books that children love to read. Levelled for guided and independent reading, each book includes ideas to support reading. Teaching and assessment support and eBooks are also available. When Tara Binns opens her dressing up box something exciting happens ... Tara Binns is a volcanologist! Tara is excited to find herself on the rocky slopes of a majestic volcano ... until the ground starts shaking, clouds of stinky gas surround her and she spots a huge crack up near the summit. Is the volcano about to erupt ...? This exciting title in the Tara Binns mini-series is written by Lisa Rajan. Diamond/Band 17 books offer more complex, underlying themes to give opportunities for children to understand causes and points of view. Text type: An adventure story Ideas for reading in the back of the book provide practical support and stimulating activities.
This is Pompeii, as you've never seen it before. In this revelatory history, Gabriel Zuchtriegel shares the new secrets of Pompeii. Over the last few years, a vast stretch of the city has been excavated for the first time. Now, drawing on these astonishing discoveries, The Buried City reveals the untold human stories that are at last emerging. Pompeii is a world frozen in time. There are unmade beds, dishes left drying, tools abandoned by workmen, bodies embracing with love and fear. And alongside the remnants of everyday life, there are captivating works of art: lifelike portraits, exquisite frescos and mosaics, and the extraordinary sculpture of a sleeping boy, curled up under a blanket that's too small. The Buried City reconstructs the catastrophe that destroyed Pompeii on 24 August 79 CE, but it also offers a behind-the-scenes tour of the city as it was before: who lived here, what mattered to them, and what happened in their final hours. It offers us a vivid sense of Pompeii's continuing relevance, and proves that ancient history is much closer to us than we think.
This book examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology.
Functions as a self-study guide and textbook containing over 110 examples and 165 problem sets with answers, a comprehensive solutions manual, and computer programs that clarify arithmetic concepts-ideal for a two-semester course in structural dynamics, analysis and design of seismic structures, matrix methods of structural analysis, numerical methods in structural engineering, and advanced structural mechanics and design This book uses state-of-the-art computer technology to formulate displacement method with matrix algebra, facilitating analysis of structural dynamics and applications to earthquake engineering and UBC and IBC seismic building codes. Links code provisions to analytical derivations and compares individual specifications across codes, including the IBC-2000 With 3700 equations and 660 drawings and tables, Matrix Analysis of Structural Dynamics: Applications and Earthquake Engineering examines vibration of trusses, rigid and elastic frames, plane grid systems, and 3-D building systems with slabs, walls, bracings, beam-columns, and rigid zones presents single and multiple degree-of-freedom systems and various response behaviors for different types of time-dependent excitations outlines determinant, iteration, Jacobian, Choleski decomposition, and Sturm sequence eigensolution methods details proportional and nonproportional damping, steady-state vibration for undamped harmonic excitation, and transient vibration for general forcing function includes P-? effects, elastic media, coupling vibrations, Timoshenko theory, and geometric and material nonlinearity illustrates free and forced vibrations of frameworks and plates stressing isoparametric finite element formulation offers several numerical integration methods with solution criteria for error and stability behavior details models and computer calculations for bracings, RC beams and columns, coupling bending, and shear of low-rise walls and more Matrix Analysis
This text was compiled by the Japanese Geotechnical Society. It describes everything about the remedial measures against liquefaction currently used in Japan following research projects after the Niigata earthquake of 1964.
Rock Mechanics and Engineering Geology in Volcanic Fields includes keynote lectures and papers from the 5th International Workshop on Rock Mechanics and Engineering Geology in Volcanic Fields (RMEGV2021, Fukuoka, Japan, 9-10 September 2021). This book deals with challenging studies related to solving engineering issues around volcanic fields, including: Volcanic geology, disasters and their mitigation Resources and energy in volcanic fields Mechanical behavior of volcanic rocks and soils Groundwater and environmental problems in volcanic fields Geotechnical engineering in volcanic fields Rock Mechanics and Engineering Geology in Volcanic Fields is of great interest to civil engineers and engineering geologists working in the areas of rock and soil mechanics, geotechnical engineering, geothermal energy, engineering geology, and environmental science.
These proceedings, arising from an international workshop, present research results and ideas on issues of importance to seismic risk reduction and the development of future seismic codes.
This work consists of two parts: engineering seismology and earthquake-resistant design. Special attention is placed on bridging the gap between these two disciplines. The fundamentals of seismology, earthquake engineering and random processes are introduced. This is followed by a chapter describing the earthquake intensity, ground motions, and its damage effects. In ensuing chapters concerning the earthquake-resistant design, both fundamental theories and new research problems and future directions are presented, including methods for foundation design and structural experiments. Finally, in the last chapter on engineering applications, seismic risk and its damaging effects, seismic zonation and features of earthquake-resistant design of different types of structures and design standards are introduced.
The papers and discussions deal with various types of shear walls, nuclear containment structures, high rise buildings, box bridges, l-girders, columns and shells. They represent early 1990s knowledge of concrete shear in earthquake.
This volume consists of papers presented at the International Conference on Earthquake, Blast and Impact held at the University of Manchester Institute of Science and Technology, UK, 18-20 September 1991, organised by the Society for Earthquake and Civil Engineering Dynamics (SECED) and supported by the Institution of Civil Engineers, the Institution of Mechanical Engineers and the Institution of Structural Engineers.
The impact of natural disasters has become an important and ever-growing preoccupation for modern societies. Volcanic eruptions are particularly feared due to their devastating local, regional or global effects. Relevant scientific expertise that aims to evaluate the hazards of volcanic activity and monitor and predict eruptions has progressively developed since the start of the 20th century. The further development of fundamental knowledge and technological advances over this period have allowed scientific capabilities in this field to evolve. Hazards and Monitoring of Volcanic Activity groups a number of available techniques and approaches to render them easily accessible to teachers, researchers and students. This volume is dedicated to geological and historical approaches. The assessment of hazards and monitoring strategies is based primarily on knowledge of a volcano's past behavior or that of similar volcanoes. The book presents the different types of volcanic hazards and various approaches to their mapping before providing a history of monitoring techniques.
Problems in nonlinear structural dynamics and critical excitation with elastic-plastic structures are typically addressed using time-history response analysis, which requires multiple repetitions and advanced computing. This alternative approach transforms ground motion into impulses and takes an energy balance approach. This book is accessible to undergraduates, being based on the energy balance law and the concepts of kinetic and strain energies, and it can be used by practitioners for building and structural design. This presentation starts with simple models that explain the essential features and extends in a step-by-step manner to more complicated models and phenomena.
Originally published in 1993, Active Lavas looks at the practical aspects of monitoring uncontrolled streams of molten rock and how field data can be applied for theoretical modelling and forecasting the growth of lava flows. It describes the basic features of common subaerial lava flows and domes - both on Earth and on other bodies in the Solar System - before discussing the logistics of measuring lava properties during eruption and how these measurements are used to develop simple theoretical models for forecasting flow behaviour.
The impact of natural disasters has become an important and ever-growing preoccupation for modern societies. Volcanic eruptions are particularly feared due to their devastating local, regional or global effects. Relevant scientific expertise that aims to evaluate the hazards of volcanic activity and monitor and predict eruptions has progressively developed since the start of the 20th century. The further development of fundamental knowledge and technological advances over this period have allowed scientific capabilities in this field to evolve. Hazards and Monitoring of Volcanic Activity groups a number of available techniques and approaches to render them easily accessible to teachers, researchers and students. This volume sets out different surveillance methods, starting with those most frequently used: seismic surveillance and deformation. It then examines surveillance by remote sensing from ground, air and space, methods that exemplify one of the most spectacular advances in this field in recent times.
Seismology has come a long way. Being the scientific study of seismic waves and their allied phenomena, it has entered a multidisciplinary realm. As the main tool, it provides a wealth of information when applied systematically to dig inside the Earth structure. Notwithstanding, the utility of seismic waves has increased manifold. Starting from knowing the epicenter of seismic events, it has influenced mapping of civil engineering structures such as dams and bridges, as well as huge constructions. Although there is no dearth of technical papers in the area of seismic waves, there is an absence of synchronized and recent coherent contents in the direction of seismic waves. The book will be a unique contribution to the field of seismology, with the aim of assimilating theory and practices. It will provide a comprehensive glimpse of recent advancements in this area with a strong unification of theory and practices. The main objective of the book is to present an in-depth analysis of the theory and real implementations of seismic waves as versatile probes that would be integrated with modern and future perspectives. The current and the future strategies to be discussed in the relevant areas of seismic waves will be another boon for readers. This book will cater to the needs of novices, researchers and practitioners. Additionally, the contents of the book will be useful for undergraduate as well as postgraduate students of earth science disciplines.
'In summary, Professor Slawinski has written an engaging volume covering an unfamiliar topic in a highly accessible fashion. Non-specialists will gain a significant appreciation of the unique complexities associated with seismology.'Contemporary PhysicsThe author dedicates this book to readers who are concerned with finding out the status of concepts, statements and hypotheses, and with clarifying and rearranging them in a logical order. It is thus not intended to teach tools and techniques of the trade, but to discuss the foundations on which seismology - and in a larger sense, the theory of wave propagation in solids - is built. A key question is: why and to what degree can a theory developed for an elastic continuum be used to investigate the propagation of waves in the Earth, which is neither a continuum nor fully elastic. But the scrutiny of the foundations goes much deeper: material symmetry, effective tensors, equivalent media; the influence (or, rather, the lack thereof) of gravitational and thermal effects and the rotation of the Earth, are discussed ab initio. The variational principles of Fermat and Hamilton and their consequences for the propagation of elastic waves, causality, Noether's theorem and its consequences on conservation of energy and conservation of linear momentum are but a few topics that are investigated in the process to establish seismology as a science and to investigate its relation to subjects like realism and empiricism in natural sciences, to the nature of explanations and predictions, and to experimental verification and refutation.In the second edition, new sections, figures, examples, exercises and remarks are added. Most importantly, however, four new appendices of about one-hundred pages are included, which can serve as a self-contained continuum-mechanics course on finite elasticity. Also, they broaden the scope of elasticity theory commonly considered in seismology.
This work presents current approaches in geophysical research of earthquakes. A global authorship from top institutions presents case studies to model, measure, and monitor earthquakes. Among others a full-3D waveform tomography method is introduced, as well as propagator methods for modeling and imaging. In particular the earthquake prediction method makes this book a must-read for researchers in the field.
|
![]() ![]() You may like...
Social Movements in the Global South…
S. Motta, A. Gunvald Nilsen
Hardcover
R2,947
Discovery Miles 29 470
Fundamental Principles Of Civil…
P.M. Bekker, T. Broodryk, …
Paperback
Tampa - Impressions of an Emigrant
Wenceslao Galvez Y Del Monte
Hardcover
R2,185
Discovery Miles 21 850
|