![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Structure & properties of the Earth
Seismosaurus: The Earth Shaker is a richly illustrated telling of the trials and triumphs of the discovery and excavation of Seismosaurus hallorum, the longest dinosaur yet known - and possibly the largest land animal ever to have lived. This is the first book to explain clearly the science used by paleontologists and the new cutting-edge techniques that led to Seismosaurus's discovery. David Gillette's first-person account of the project answers the most frequently asked questions about Seismosaurus: How was it discovered? How do we know it is a new species? How was it named? And more intriguing still, how did it die? His chronicle also examines the sauropods in general - the giant dinosaurs that with Seismosaurus include Apatosaurus (Brontosaurus), Brachiosaurus, and Diplodocus. This lively tale of discovery is woven with anecdotes and descriptions of the details of the excavation, which began with small jackhammers and later incorporated such sophisticated machinery as ground-penetrating radar that "looks" for fossils underground with radio waves. The story moves from the excavation site in 1985 to current advances in research and then back to the prehistoric age as Gillette, in adventure-narrative style, describes the habitat, habits, and characteristics of the sauropod, right down to Seismosaurus's gastroliths - stomach stones that helped in digestion. Part catalogue of the workings of paleontological science in the 1990s, the book also illustrates the exciting collaboration between David Gillette and the chemists and physicists who helped to reconstruct Seismosaurus and its life. Excavation of the Seismosaurus skeleton was completed in the fall of 1993. Some bones are already ondisplay at the New Mexico Museum of Natural History. Meanwhile, Mark Hallett, a consultant on Steven Spielberg's Jurassic Park, brings Seismosaurus to life in more than eighty marvelous color and black-and-white illustrations. Seismosaurus: The Earth Shaker is a delight!
This book examines historical evidence from the last 2000 years to analyse earthquakes in the eastern Mediterranean and Middle East. Early chapters review techniques of historical seismology, while the main body of the book comprises a catalogue of more than 4000 earthquakes identified from historical sources. Each event is supported by textual evidence extracted from primary sources and translated into English. Covering southern Rumania, Greece, Turkey, Lebanon, Israel, Egypt, Jordan, Syria, and Iraq, the book documents past seismic events, places them in a broad tectonic framework, and provides essential information for those attempting to prepare for, and mitigate the effects of, future earthquakes and tsunamis in these countries. This volume is an indispensable reference for researchers studying the seismic history of the eastern Mediterranean and Middle East, including archaeologists, historians, earth scientists, engineers and earthquake hazard analysts. A parametric catalogue of these seismic events can be downloaded from www.cambridge.org/9780521872928.
Seismic Risk Analysis of Nuclear Power Plants addresses the needs of graduate students in engineering, practicing engineers in industry, and regulators in government agencies, presenting the entire process of seismic risk analysis in a clear, logical, and concise manner. It offers a systematic and comprehensive introduction to seismic risk analysis of critical engineering structures focusing on nuclear power plants, with a balance between theory and applications, and includes the latest advances in research. It is suitable as a graduate-level textbook, for self-study, or as a reference book. Various aspects of seismic risk analysis - from seismic hazard, demand, and fragility analyses to seismic risk quantification, are discussed, with detailed step-by-step analysis of specific engineering examples. It presents a wide range of topics essential for understanding and performing seismic risk analysis, including engineering seismology, probability theory and random processes, digital signal processing, structural dynamics, random vibration, and engineering risk and reliability.
The theory of plate tectonics transformed earth science. The hypothesis that the earth's outermost layers consist of mostly rigid plates that move over an inner surface helped describe the growth of new seafloor, confirm continental drift, and explain why earthquakes and volcanoes occur in some places and not others. Lynn R. Sykes played a key role in the birth of plate tectonics, conducting revelatory research on earthquakes. In this book, he gives an invaluable insider's perspective on the theory's development and its implications. Sykes combines lucid explanation of how plate tectonics revolutionized geology with unparalleled personal reflections. He entered the field when it was on the cusp of radical discoveries. Studying the distribution and mechanisms of earthquakes, Sykes pioneered the identification of seismic gaps-regions that have not ruptured in great earthquakes for a long time-and methods to estimate the possibility of quake recurrence. He recounts the various phases of his career, including his antinuclear activism, and the stories of colleagues around the world who took part in changing the paradigm. Sykes delves into the controversies over earthquake prediction and their importance, especially in the wake of the giant 2011 Japanese earthquake and the accompanying Fukushima disaster. He highlights geology's lessons for nuclear safety, explaining why historic earthquake patterns are crucial to understanding the risks to power plants. Plate Tectonics and Great Earthquakes is the story of a scientist witnessing a revolution and playing an essential role in making it.
Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards.
When the volcano Tambora erupted in Indonesia in 1815, as many as 100,000 people perished as a result of the blast and an ensuing famine caused by the destruction of rice fields on Sumbawa and neighboring islands. Gases and dust particles ejected into the atmosphere changed weather patterns around the world, resulting in the infamous ''year without a summer'' in North America, food riots in Europe, and a widespread cholera epidemic. And the gloomy weather inspired Mary Shelley to write the gothic novel "Frankenstein." This book tells the story of nine such epic volcanic events, explaining the related geology for the general reader and exploring the myriad ways in which the earth's volcanism has affected human history. Zeilinga de Boer and Sanders describe in depth how volcanic activity has had long-lasting effects on societies, cultures, and the environment. After introducing the origins and mechanisms of volcanism, the authors draw on ancient as well as modern accounts--from folklore to poetry and from philosophy to literature. Beginning with the Bronze Age eruption that caused the demise of Minoan Crete, the book tells the human and geological stories of eruptions of such volcanoes as Vesuvius, Krakatau, Mount Pelee, and Tristan da Cunha. Along the way, it shows how volcanism shaped religion in Hawaii, permeated Icelandic mythology and literature, caused widespread population migrations, and spurred scientific discovery. From the prodigious eruption of Thera more than 3,600 years ago to the relative burp of Mount St. Helens in 1980, the results of volcanism attest to the enduring connections between geology and human destiny."
Seismic Ray Theory presents a comprehensive treatment of the seismic ray method. This method plays an important role in seismology, seismic exploration, and in the interpretation of seismic measurements. Many concepts which extend the possibilities and increase the efficiency of the seismic ray method are included. The book has a tutorial character: derivations start with a relatively simple problem, in which the main ideas are easier to explain, and then advance to more complex problems. Most of the derived equations in the book are expressed in algorithmic form and may be used directly for computer programming. This book will prove to be an invaluable advanced textbook and reference volume in all academic institutions in which seismology is taught or researched. It will also be an invaluable resource in the research and exploration departments of the petroleum industry and in geological surveys.
Modern seismology is a relatively new science; most current ideas originated no earlier than the latter half of the nineteenth century. The focus of this book is on seismological concepts, how they originated and how they form our modern understanding of the science. A history of seismology falls naturally into four periods: a largely mythological period previous to the 1755 Lisbon earthquake; a period of direct observation from then to the development of seismometers in the late 19th century; a period during which study of seismic arrival times were used to outline the structure of the earth's interior extending to the 1960s; the modern era in which all aspects of seismic waves are used in combination with trial models and computers to elucidate details of the earthquake process. This history attempts to show how modern ideas grew from simple beginnings. Ideas are rarely new, and their first presentations are often neglected until someone is able to present the evidence for their correctness convincingly. Much care has been used to give the earliest sources of ideas and to reference the basic papers on all aspects of earthquake seismology to help investigators find such references in tracing the roots of their own work.
Kostrov and Das present a general theoretical model summarizing our current knowledge of fracture mechanics as applied to earthquakes and earthquake source processes. Part I explains continuum and fracture mechanics, providing the reader with some background and context. Part II continues with a discussion of the inverse problem of earthquake source theory and a description of the seismic moment tensor. Part III presents specific earthquake source models. Although data processing and acquisition techniques are discussed only in simplified form for illustrative purposes, the material in this book will aid in better orienting and developing these techniques. The aim of this book is to explore the phenomena underlying earthquake fracture and present a general theoretical model for earthquake source processes.
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
This is the first book to really make sense of the dizzying array of information that has emerged in recent decades about earthquakes. Susan Hough, a research seismologist in one of North America's most active earthquake zones and an expert at communicating this complex science to the public, separates fact from fiction. She fills in many of the blanks that remained after plate tectonics theory, in the 1960s, first gave us a rough idea of just what earthquakes are about. How do earthquakes start? How do they stop? Do earthquakes occur at regular intervals on faults? If not, why not? Are earthquakes predictable? How hard will the ground shake following an earthquake of a given magnitude? How does one quantify future seismic hazard? As Hough recounts in brisk, jargon-free prose, improvements in earthquake recording capability in the 1960s and 1970s set the stage for a period of rapid development in earthquake science. Although some formidable enigmas have remained, much has been learned on critical issues such as earthquake prediction, seismic hazard assessment, and ground motion prediction. This book addresses those issues. Because earthquake science is so new, it has rarely been presented outside of technical journals that are all but opaque to nonspecialists. "Earthshaking Science" changes all this. It tackles the issues at the forefront of modern seismology in a way most readers can understand. In it, an expert conveys not only the facts, but the passion and excitement associated with research at the frontiers of this fascinating field. Hough proves, beyond a doubt, that this passion and excitement is more accessible than one might think.
Volcanologists venture to treacherous volcanoes the world over in the pursuit of their science. They work around craters of boiling magma and amidst smoke, flames, scorched rocks, and clouds of noxious gases--balancing personal risk against advancing knowledge about one of nature's most dangerous and unpredictable forces. Richard Fisher, a world-renowned volcanologist, has had more than forty years of experience in the field. In this book, he blends autobiography with clear, accessible science to introduce readers to the basics of volcanology and to the wonders of volcanoes that he has studied and learned to both fear and admire. In the course of the book, we follow Fisher as he descends into the steaming crater of the Soufri re Volcano on the island of St. Vincent, as he conducts research on lava flows on the desolate south shore of the Island of Hawaii, and as he struggles to understand the explosion at Mount St. Helens. We learn about his pioneering work on pyroclastic flows and surges--the hurricanes of gases, molten lava, and volcanic debris that cause most of the death and destruction when volcanoes explode. He tells of solving a historic scientific problem at Mount Pelee, Martinique, where 29,000 people were killed in a pyroclastic flow in 1902. Fisher also offers a volcanologist's view of the explosion of Mount Vesuvius that devastated Pompeii and Herculaneum. He writes about the cultural rewards and challenges of conducting research in isolated areas of such countries as Argentina, Mexico, and China. And he discusses the early influences that steered him toward volcanology--including his army experiences as a witness to two atom-bomb explosions at Bikini atoll. "Out of the Crater" is written in an inviting, nontechnical style. With its deft combination of personal stories and scientific information, it is an inspiring account of a remarkable life and a compelling examination of some of the most spectacular forces shaping the face of the Earth.
Bridging the gap between introductory textbooks and advanced monographs, this book provides the necessary mathematical tools to tackle seismological problems and demonstrates how to apply them. Including student exercises, for which solutions are available on a dedicated website, it appeals to advanced undergraduate and graduate students. It is also a useful reference volume for researchers wishing to "brush up" on fundamentals before they study more advanced topics in seismology.
The two volumes of The Seismic Wavefield are a comprehensive guide to the understanding of seismograms in terms of physical propagation processes within the Earth. The focus is on the observation of earthquakes and man-made sources on all scales, for both body waves and surface waves. Volume I provides a general introduction and a development of the theoretical background for seismic waves. Volume II looks at the way in which observed seismograms relate to the propagation processes. Volume II also discusses local and regional seismic events, global wave propagation, and the three-dimensional Earth.
The Seismic Wavefield provides a guide to the understanding of seismograms in terms of physical propagation processes within the Earth. The focus is on the observation of earthquakes and man-made sources on all scales, for both body waves and surface waves. Volume I begins with a survey of the structure of the Earth and the nature of seismic wave propagation using examples of observed seismograms. The second part provides a full development of the theoretical background for seismic waves. Volume II (to be published later) will cover local and regional seismic events, global wave propagation, and the three-dimensional earth.
The Gulf of Mexico Basin is one of the most prolific hydrocarbon-producing basins in the world, with an estimated endowment of 200 billion barrels of oil equivalent. This book provides a comprehensive overview of the basin, spanning the US, Mexico and Cuba. Topics covered include conventional and unconventional reservoirs, source rocks and associated tectonics, basin evolution from the Mesozoic to Cenozoic Era, and different regions of the basin from mature onshore fields to deep-water subsalt plays. Cores, well logs and seismic lines are all discussed providing local, regional and basin-scale insights. The scientific implications of seminal events in the basin's history are also covered, including sedimentary effects of the Chicxulub Impact. Containing over 200 color illustrations and 50 stratigraphic cross-sections and paleogeographic maps, this is an invaluable resource for petroleum industry professionals, as well as graduate students and researchers interested in basin analysis, sedimentology, stratigraphy, tectonics and petroleum geology.
David Sandwell developed this advanced textbook over a period of nearly 30 years for his graduate course at Scripps Institution of Oceanography. The book augments the classic textbook Geodynamics by Don Turcotte and Jerry Schubert, presenting more complex and foundational mathematical methods and approaches to geodynamics. The main new tool developed in the book is the multi-dimensional Fourier transform for solving linear partial differential equations. The book comprises nineteen chapters, including: the latest global data sets; quantitative plate tectonics; plate driving forces associated with lithospheric heat transfer and subduction; the physics of the earthquake cycle; postglacial rebound; and six chapters on gravity field development and interpretation. Each chapter has a set of student exercises that make use of the higher-level mathematical and numerical methods developed in the book. Solutions to the exercises are available online for course instructors, on request.
The length of Aegean arc in south-west Turkey has been deter mined by the use of intermediate focal depth earthquakes which occurred between 1900-1985 in the south-west of Turkey (34.00- 38.00 Nand 27.00-32.00 E). Intermediate focal depth earthqua kes in south-west Turkey revealed the presence of a seismic Benioff zone caused by underthrusting of the African litho spheric plate by the Aegean arc. In order to determine the geometry of underthrustin%detailed epicenter maps of the in termediate depth earthquakes in south-west of Turkey were pre pared. It is known that these earthquakes brought great harm in the past. Investigation of time distribution of them will help to predict the occurrence of them in the future. These intermediate focal depth earthquakes can be differenti ated from deep ones by their micro- and macroseismic proper ties. Papazachos (1969) and Comninakis (1970) found that the foci of these earthquakes are in a zone underthrusting exten ding from the East Mediterranean to the Aegean arc. Morgan (1968) and Le pichori (1968) defined three plates which are important in East Mediterranean tectonics. These are the Afri ca, Arabic and Eurasian plates. They define wide earthquake belt on the boundaries between the African and Eurasian plate."
Volcanoes of North America capitalises on the vast body of volcano literature now available to present, in a single source, detailed information about volcanoes found in North America. It contains brief accounts, written by leading experts in volcanology, of over 250 volcanoes and volcanic fields formed during the last 5 million years. The volcanoes of the continental United States, Alaska, Hawaii, and Canada are described. The precise location of each volcano is given, and the volcano is classified by type. Information about composition and eruptive history is also included. Each narrative description is accompanied by a photograph, a map of each location, and an extremely helpful statement on how to reach each volcano. The entries are mostly written at a level understandable by lay readers, but technical terms are also used and a background in geology is advantageous. Volcanoes of North America will be a standard reference work for practising volcanologists, petrologists, and geochemists, and to some extent, geographers. In addition, the maps and the 'How to get there' sections make this a highly valuable book for anyone interested in natural history or fascinated by volcanoes.
Describes the basic structure, concepts, and application of deterministic and probabilistic seismic hazard analysis from a perspective useful to earth scientists, engineers, and decision-makers dealing with hazard evaluation. Draws on Reiter's long experience with government agencies concerned with
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 160.Understanding the inner workings of our planet and its relationship to processes closer to the surface remains a frontier in the geosciences. Manmade probes barely reach 10 km depth and volcanism rarely brings up samples from deeper than 150 km. These distances are dwarfed by Earth's dimensions, and our knowledge of the deeper realms is pieced together from a range of surface observables, meteorite and solar atmosphere analyses, experimental and theoretical mineral physics and rock mechanics, and computer simulations. A major unresolved issue concerns the nature of mantle convection, the slow (1-5 cm/year) solid-state stirring that helps cool the planet by transporting radiogenic and primordial heat from Earth's interior to its surface. Expanding our knowledge here requires input from a range of geoscience disciplines, including seismology, geodynamics, mineral physics, and mantle petrology and chemistry. At the same time, with better data sets and faster computers, seismologists are producing more detailed models of 3-D variations in the propagation speed of different types of seismic waves; new instrumentation and access to state-of-the-art community facilities such as synchrotrons have enabled mineral physicists to measure rock and mineral properties at ever larger pressures and temperatures; new generations of mass spectrometers are allowing geo-chemists to quantify minute concentrations of diagnostic isotopes; and with supercomputers geodynamicists are making increasingly realistic simulations of dynamic processes at conditions not attainable in analogue experiments. But many questions persist. What causes the lateral variations in seismic wavespeed that we can image with mounting accuracy? How reliable are extrapolations of laboratory measurements on simple materials over many orders of magnitude of pressure and temperature? What are the effects of volatiles and minor elements on rock and mineral properties under extreme physical conditions? Can ab initio calculations help us understand material behavior in conditions that are still out of reach of laboratory measurement? What was the early evolution of our planet and to what extent does it still influence present-day dynamics? And how well do we know such first-order issues as the average bulk composition of Earth?
Geopressure, or pore pressure in subsurface rock formations impacts hydrocarbon resource estimation, drilling, and drilling safety in operations. This book provides a comprehensive overview of geopressure analysis bringing together rock physics, seismic technology, quantitative basin modeling and geomechanics. It provides a fundamental physical and geological basis for understanding geopressure by explaining the coupled mechanical and thermal processes. It also brings together state-of-the-art tools and technologies for analysis and detection of geopressure, along with the associated uncertainty. Prediction and detection of shallow geohazards and gas hydrates is also discussed and field examples are used to illustrate how models can be practically applied. With supplementary MATLAB (R) codes and exercises available online, this is an ideal resource for students, researchers and industry professionals in geoscience and petroleum engineering looking to understand and analyse subsurface formation pressure.
|
![]() ![]() You may like...
System Architecture, Global Edition
Bruce Cameron, Edward Crawley, …
Paperback
R2,700
Discovery Miles 27 000
Ewa Orlowska on Relational Methods in…
Joanna Golinska-Pilarek, Michal Zawidzki
Hardcover
R4,198
Discovery Miles 41 980
Formal Specification Level - Concepts…
Mathias Soeken, Rolf Drechsler
Hardcover
Network-on-Chip Security and Privacy
Prabhat Mishra, Subodha Charles
Hardcover
R3,457
Discovery Miles 34 570
Introduction to Semiconductor Device…
Albert V.Ferris- Prabhu
Hardcover
R2,305
Discovery Miles 23 050
Invasive Computing for Mapping Parallel…
Andreas Weichslgartner, Stefan Wildermann, …
Hardcover
R2,885
Discovery Miles 28 850
Tree-based Heterogeneous FPGA…
Umer Farooq, Zied Marrakchi, …
Hardcover
R2,878
Discovery Miles 28 780
|