![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Structure & properties of the Earth
Despite growing evidence of geothermic activity under America's
first and foremost national park, it took geologists a long time to
realize that there was actually a volcano beneath Yellowstone. And
then, why couldn't they find the caldera or crater? Because, as an
aerial photograph finally revealed, the caldera is 45 miles wide,
encompassing all of Yellowstone. What will happen, in human terms,
when it erupts?
Close to 75 million people in 39 states face some risk from earthquakes. Seismic hazards are greatest in the western United States, particularly California, Alaska, Washington, Oregon, and Hawaii. The Rocky Mountain region, a portion of the central United States known as the New Madrid Seismic Zone, and portions of the eastern seaboard, particularly South Carolina, also have a relatively high earthquake hazard. Compared to the loss of life in other countries, relatively few Americans have died as a result of earthquakes over the past 100 years. The United States, however, faces the possibility of large economic losses from earthquake damaged buildings and infrastructure.
Written by the author of "The Forecasting of Volcano Eruptions," this book tells about the color, splendor, nature and life. About the people who are warm, friendly and, of course, very French. Reunion Island, located in the Indian Ocean, is currently believed to have been discovered early in the 16th century by the Portuguese navigator Pedro de Mascarenhas. In the year 1638, Reunion Island was claimed by France as a stopover point for mercantile ships on their way to India. The French East India Company established a small colony on Reunion in the year 1665. Originally called Ile de Bourbon, it was named Reunion in 1793 during the French Revolution.
This book is a facsimile reprint and may contain imperfections such as marks, notations, marginalia and flawed pages.
The major theme of this book is scientific evaluation of different categories of unusual phenomena i.e. precursors prior to large earthquakes and the explanation of their occurrence using electromagnetic models. In addition focus has been targeted to consider various scientific methods in the arena of interdisciplinary fields mainly on the short term forecasting of the large earthquakes, which is making a remarkable progress in recent years. The book presents an integrated approach to the concept of earthquake prediction as a whole, based on studies of precursors related to the living things, underground, land and atmosphere. The book will play an important role in the understanding and developing new and effective systems for earthquake prediction, based on multidisciplinary approach, which will ultimately help in reducing the earthquake related loss of lives and property.
Forecasting the time, place, and character of a volcanic eruption is one of the major goals of volcanology. It is also one of the most difficult goals to achieve. Until recently, people living in a volcano's shadow had little help anticipating an eruption. A major volcanic event might strike with no warning at all. In the past 300 years, volcanic eruptions, most of them unexpected, have killed more than 250,000 people. In 2000, experts estimated that 500 million people were living in areas at risk from catastrophic volcanic eruptions. This book describes the strides that have made in eruption forecasting in recent years and explores why accurately predicting volcanic events remains difficult. Based on the methodologies in this book, Eruption Pro 10.6, to our knowledge, it is the only software programme of its type anywhere in the world. Eruption Pro 10.6 performs analysis on current available volcano eruption data from both historical and current available eruption data, near real-time measurement data including, seismic, deformation, thermal, frequency of eruption analysis, solar & lunar influences, crater lake temperature (if applicable), COSPEC, & statistical procedures. The newest version also accounts for, albeit very small, contributions due to lunar and solar influences.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
The ultimate introduction to seismology, written by distinguished scholar and Professor Bruce Bolt, of the University of California, Berkeley, this newly updated edition will provide the best foundation in the field for your introductory students.
"This is the most complete reference available on Texas earthquakes.... Its general information on earthquakes, presented in a humorous and understandable manner, will even make the text attractive to non-Texans who want to know more about earthquakes." -- Diane I. Doser, Professor of Geology, University of Texas at El Paso When nature goes haywire in Texas, it isn't usually an earthshaking event. Though droughts, floods, tornadoes, and hail all keep Texans talking about the unpredictable weather, when it comes to earthquakes, most of us think we're on terra firma in this state. But we're wrong! Nearly every year, earthquakes large enough to be felt by the public occur somewhere in Texas. This entertaining, yet authoritative book covers "all you really need to know" about earthquakes in general and in Texas specifically. The authors explain how earthquakes are caused by natural forces or human activities, how they're measured, how they can be predicted, and how citizens and governments should prepare for them. They also thoroughly discuss earthquakes in Texas, looking at the occurrences and assessing the risks region by region and comparing the amount of seismic activity in Texas to other parts of the country and the world. The book concludes with a compendium of over one hundred recorded earthquakes in Texas from 1811 to 2000 that briefly describes the location, timing, and effects of each event.
Fundamentals of Physical Volcanology is a comprehensive overview of
the processes that control when and how volcanoes erupt.
Understanding these processes involves bringing together ideas from
a number of disciplines, including branches of geology, such as
petrology and geochemistry; and aspects of physics, such as fluid
dynamics and thermodynamics.
Based on an intimate knowledge and extensive research, Italian volcanoes, provides a complete introductory guide to one of the world s best known and most intensively studied volcanic areas. It is a unique guide to volcanic geology and an exciting introduction to how volcanoes work. Twelve detailed itineraries have been specially chosen to highlight the spectrum of volcanic products, their threat to human activity and their importance to understanding how volcanoes behave. Richly illustrated with maps and photographs, this guide is ideal for all geologists and visitors to Italy who have been captivated by some of the world s most spectacular volcanoes. (Series: Classic Geology in Europe)
In this book the author will present several approaches for modelling and identification of seismic records based on formulations for source and transmission path. This will demonstrate an approach based on a criterion other that statistical goodness of fit. They will provide reasons for the success of the models and methods that are used frequently. This will provide a criterion to decide which models are good for all data sets, not just for the data at hand. Moreover, we will explain the relationships that exist between certain geophysical variables (e.g. corner frequency) and statistical quantities (e.g. zero-crossing) and use that to support our modelling and identification approaches.
The Story of Earthquakes and Volcanoes
This book is a paperback reprint of Advances in Geophysics, Volume 35 (1994, Academic Press). It provides an overview of the dramatic progress made in illuminating the properties of deep slabs and the surrounding mantle since the introduction of the plate tectonics model to the earth sciences more than 25 years ago. The thermal and chemical characteristics of the subducted lithosphere are determined through thermal and petrological modeling, with seismological observations providing critical constraints on model parameters. Down-wellings of the oceanic lithosphere play a critical role in plate tectonics by recycling to the mantle material that has risen at mid-ocean ridges and cooled at the earth's surface. To assist future efforts in developing detailed thermal and petrological models of oceanic lithosphere down-wellings, this volume includes a comprehensive review of seismological observations and models. A range of seismological procedures are considered, from travel time constraints on seismic velocity anomalies in the subducting lithospheric slabs, to wave conversions and reflections off internal and external slab boundaries. An extensive reference list will be useful to earth science researchers and seismological specialists as a directory to most of the critical literature on slab structure. * Provides a comprehensive, chronological summary of
seismological studies of slab structure
The first effective seismographs were built between 1879 and 1890. In 1885, E. S. Holden, an astronomer and then president of the University of California, instigated the purchase of the best available instruments of the time "to keep a register of all earthquake shocks in order to be able to control the positions of astronomical instruments." These seismographs were installed two years later at Lick Observatory on Mt. Hamilton and at the Berkeley campus of the University. Over the years those stations have been upgraded and joined by other seismographic stations administered at Berkeley, to become the oldest continuously operating stations in the Western Hemisphere. The first hundred years of the Seismographic Stations of the University of California at Berkeley, years in which seismology has often assumed an unforeseen role in issues of societal and political importance, ended in 1987. To celebrate the centennial a distinguished group of fellows, staff, and friends of the Stations met on the Berkeley campus in May 1987. The papers they presented are gathered in this book, a distillation of the current state of the art in observatory seismology. Ranging through subjects of past, present, and future seismological interest, they provide a benchmark reference for years to come. This title is part of UC Press's Voices Revived program, which commemorates University of California Press's mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1989.
Seismology is an important branch of earth science and geophysics, providing most of our knowledge of the structure of the Earth and is used in investigations of the sub-surface, being essential in the modern exploration for oil and gas, an area In which most seismotegists are employed. The study of earthquakes is a fascinating subject both for the professional and the fayperson, and has increasing importance as populations expand and spread. Seismology continues to grow and become more sophisticated with the development of better instruments and surveys, and the impact of the computer. Providing an introduction to the subject, this volume looks at general seismology, seismic waves, earthquakes and their effects, the structure of the Earth, and exploration seismology, in particular hydrocarbon exploration. This highly illustrated book includes a survey of principles and applications with a non-mathematical approach, together with an historical section and a large reference list. Suitable for students, geologists, geophysicists, and the layperson, this volume provides an up-to-date overview of general and exploration seismology.
This book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.
Volcanoes are unquestionably one of the most spectacular and awe-inspiring features of the physical world. Our paradoxical fascination with them stems from their majestic beauty and powerful, sometimes deadly, destructiveness. Notwithstanding the tremendous advances in volcanology since ancient times, some of the mystery surrounding volcanic eruptions remains today. The Encyclopedia of Volcanoes summarizes our present knowledge of volcanoes; it provides a comprehensive source of information on the causes of volcanic eruptions and both the destructive and beneficial effects. The early chapters focus on the science of volcanism (melting of source rocks, ascent of magma, eruption processes, extraterrestrial volcanism, etc.). Later chapters discuss human interface with volcanoes, including the history of volcanology, geothermal energy resources, interaction with the oceans and atmosphere, health aspects of volcanism, mitigation of volcanic disasters, post-eruption ecology, and the impact of eruptions on organismal biodiversity.
|
![]() ![]() You may like...
Mountains Of Fire - The Secret Lives Of…
Clive Oppenheimer
Paperback
Seismic While Drilling - Fundamentals of…
F.B. Poletto, F. Miranda
Paperback
R4,624
Discovery Miles 46 240
|