![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design
This book is a collection of papers presented by renowned researchers, keynote speakers, and academicians in the International Conference on VLSI, Communication, Analog Designs, Signals & Systems and Networking (VCASAN-2013), organized by B.N.M. Institute of Technology, Bangalore, India during July 17 19, 2013. The book provides global trends in cutting-edge technologies in electronics and communication engineering. The content of the book is useful to engineers, researchers, and academicians as well as industry professionals.
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named "Hybridized Nash-Pareto games". Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems. This book will be of interest to students, young scientists and engineers involved in the field of multi physics optimization.
The 1980s have witnessed a tremendous growth in the field of computer integrated manufacturing systems. The other major areas of development have been computer-aided design, computer-aided manufacturing, industrial robotics, automated assembly, cellular and modular material handling, computer networking and office automation to name just a few. These new technologies are generally capital intensive and do not conform to traditional cost structures. The net result is a tremendous change in the way costs should be estimated and economic analyses performed. The majority of existing engineering economy texts still profess application of traditional analysis methods. But, as was men tioned above, it is clear that the basic trend in manufacturing industries is itself changing. So it is quite obvious that the practice of traditional economic analysis methods should change too. This book is an attempt to address the various issues associated with non-traditional methods for evaluation of advanced computer-integrated technologies. This volume consists of twenty refereed articles which are grouped into five parts. Part one, Economic Justification Methods, consists of six articles. In the first paper, Soni et at. present a new classification for economic justification methods for advanced automated manufacturing systems. In the second, Henghold and LeClair look at strengths and weaknesses of expert systems in general and more specifically, an ap plication aimed at investment justification in advanced technology. The third paper, by Carrasco and Lee, proposes an enhanced economic methodology to improve the needs analysis, conceptual design and de tailed design activities associated with technology modernization."
This book will describe ultra low-power, integrated circuits and systems designed for the emerging field of neural signal recording and processing, and wireless communication. Since neural interfaces are typically implanted, their operation is highly energy-constrained. This book introduces concepts and theory that allow circuit operation approaching the fundamental limits. Design examples and measurements of real systems are provided. The book will describe circuit designs for all of the critical components of a neural recording system, including: Amplifiers which utilize new techniques to improve the trade-off between good noise performance and low power consumption. Analog and mixed-signal circuits which implement signal processing tasks specific to the neural recording application: Detection of neural spikes Extraction of features that describe the spikes Clustering, a machine learning technique for sorting spikes Weak-inversion operation of analog-domain transistors, allowing processing circuits that reduce the requirements for analog-digital conversion and allow low system-level power consumption. Highly-integrated, sub-mW wireless transmitter designed for the Medical Implant Communications Service (MICS) and ISM bands.
Geometric modelling has been an important and interesting subject for many years from the purely mathematical and computer science viewpoint, and also from the standpoint of engineering and various other applications, such as CAD/CAM, entertainment, animation, and multimedia. This book focuses on the interaction between the theoretical foundation of geometric modelling and practical applications in CAD and related areas. Geometric Modelling: Theoretical and Computational Basis towards Advanced CAD Applications starts with two position papers, discussing basic computational theory and practical system solutions. The well-organized seven review papers give a systematic overview of the current situation and deep insight for future research and development directions towards the reality of shape representation and processing. They discuss various aspects of important issues, such as geometric computation for space search and shape generation, parametric modelling, feature modelling, user interface for geometric modelling, geometric modelling for the Next Generation CAD, and geometric/shape standard. Other papers discuss features and new research directions in geometric modelling, solid modeling, free-form surface modeling, intersection calculation, mesh modeling and reverse engineering. They cover a wide range of geometric modelling issues to show the problem scope and the technological importance. Researchers interested in the current status of geometric modelling research and developments will find this volume to be an essential reference.
Gindis introduces AutoCAD with step-by-step instructions, stripping away complexities to begin working in AutoCAD immediately. All concepts are explained first in theory, and then shown in practice, helping the reader understand "what "it is they are doing and why before they do it. The book contains supporting graphics (screen shots) and a
summary with a self-test section at the end of each chapter. Also
included are drawing examples and exercises, and two running
projects that the reader works on as they progresses through the
chaptersExplains the why and how of AutoCAD commands: all concepts
are explained first in theory andthencovered in step-by-step
detailExtensive use of screen shots, chapter summaries, and
aself-test section at the end of each chapter Includesdrawing
examples and exercises, and two running projects that the reader
works on as he/she progresses through the chaptersEach chapter
features a "Spotlight On..." section, highlighting theuse of
AutoCAD in various industries Fully updated for AutoCAD 2010
release, including introduction of the ribbon menu structurein
chapter 1Strips away complexities, both real and perceived, and
reduces AutoCAD to easy-to-understand basic concepts; using the
author's extensive multi-industry knowledge of what is widely used
in practice, the material is presented by immediately immersing the
reader in practical, critically essential knowledge
This professional treatise on engineering graphics emphasizes engineering geometry as the theoretical foundation for communication of design ideas with real world structures and products. It considers each theoretical notion of engineering geometry as a complex solution of direct- and inverse-problems of descriptive geometry and each solution of basic engineering problems presented is accompanied by construction of biunique two- and three-dimension models of geometrical images. The book explains the universal structure of formal algorithms of the solutions of positional, metric, and axonometric problems, as well as the solutions of problems of construction in developing a curvilinear surface. The book further characterizes and explains the added laws of projective connections to facilitate construction of geometrical images in any of eight octants. Laws of projective connections allow constructing the complex drawing of a geometrical image in the American system of measurement and the European system of measurement without errors and mistakes. The arrangement of projections of a geometrical image on the complex drawing corresponds to an arrangement of views of a product in the projective drawing for the European system of measurement. The volume is ideal for engineers working on a range of design projects as well as for students of civil, structural, and industrial engineering and engineering design.
Reliability, Maintainability and Risk: Practical Methods for Engineers, Tenth Edition has taught reliability and safety engineers techniques to minimize process design, operation defects and failures for over 40 years. For beginners, the book provides tactics on how to avoid pitfalls in this complex and wide field. For experts in the field, well-described, realistic and illustrative examples and case studies add new insights and assistance. The author uses his more than 40 years of experience to create a comprehensive and detailed guide to the field, while also providing an excellent description of reliability and risk computation concepts. The book is organized into many parts, covering reliability parameters and costs, the history of reliability and safety technology, a cost-effective approach to quality, reliability and safety, how to interpret failure rates, a focus on the prediction of reliability and risk, a discussion of design and assurance techniques, and much more.
The rapid introduction of sophisticated computers, services, telecommunications systems, and manufacturing systems has caused a major shift in the way people use and work with technology. It is not surprising that computer-aided modeling has emerged as a promising method for ensuring products meet the requirements of the consumer. The Handbook of Digital Human Modeling provides comprehensive coverage of the theory, tools, and methods to effectively achieve this objective. The 56 chapters in this book, written by 113 contributing authorities from Canada, China, France, Germany, the Netherlands, Poland, Sweden, Taiwan, UK, and the US, provide a wealth of international knowledge and guidelines. They cover applications in advanced manufacturing, aerospace, automotive, data visualization and simulation, defense and military systems, design for impaired mobility, healthcare and medicine, information systems, and product design. The text elucidates tools to help evaluate product and work design while reducing the need for physical prototyping. Additional software and demonstration materials on the CRC Press web site include a never-before-released 220-page step-by-step UGS-Siemens JackTM help manual developed at Purdue University. The current gap between capability to correctly predict outcomes and set expectation for new and existing products and processes affects human-system performance, market acceptance, product safety, and satisfaction at work. The handbook provides the fundamental concepts and tools for digital human modeling and simulation with a focus on its foundations in human factors and ergonomics. The tools identified and made available in this handbook help reduce the need for physical prototyping. They enable engineers to quantify acceptability and risk in design in terms of the human factors and ergonomics.
This book offers a comprehensive introduction to Subdivision Surface Modeling Technology focusing not only on fundamental theories but also on practical applications. It furthers readers' understanding of the contacts between spline surfaces and subdivision surfaces, enabling them to master the Subdivision Surface Modeling Technology for analyzing subdivision surfaces. Subdivision surface modeling is a popular technology in the field of computer aided design (CAD) and computer graphics (CG) thanks to its ability to model meshes of any topology. The book also discusses some typical Subdivision Surface Modeling Technologies, such as interpolation, fitting, fairing, intersection, as well as trimming and interactive editing. It is a valuable tool, enabling readers to grasp the main technologies of subdivision surface modeling and use them in software development, which in turn leads to a better understanding of CAD/CG software operations.
This is an edited collection of peer-reviewed papers presented at the Ninth International Conference of the Society for the Advancement of Kinanthropometry. Defined as the relationship between human body structure and function, kinanthropometry is an area of growing interest, and these proceedings will be of use to students, academics and professionals in the areas of ergonomics, sports science, nutrition, health, and other allied fields. The assembled works represent the latest research findings across kinanthropometry, moving the discipline forward and promoting good practice and the exchange of expertise.
This book presents the scientific principles and real-world best practices of behavioral safety, one of the most mature and impactful applications of behavioral science to reduce injuries in industrial workplaces. The authors review the core principles of behavioral science and their application to modern safety processes. Process components are discussed in detail, including risk analysis and pinpointing, direct observation, performance feedback, reinforcing engagement, trending and functional analysis, behavior change interventions, and program evaluation. Discussions are complemented by industry best-practice case studies from world-class behavioral safety programs accredited by the Cambridge Center for Behavioral Studies (CCBS), which provide compelling evidence of the effectiveness of these behavioral science principles in reducing injury. The Science and Best Practices of Behavioral Safety is essential reading for safety professionals, process safety engineers, and leaders in companies who have implemented, or are considering implementing, behavioral safety; or as an aid to learning more about the scientific background behind effective and practical safety practices. Researchers, expert consultants, and students who are already familiar with the practice will also find the book a valuable source to further develop their expertise.
This book covers recent advances in the field of logic synthesis and design, including Boolean Matching, Logic Decomposition, Boolean satisfiability, Advanced Synthesis Techniques and Applications of Logic Design. All of these topics are valuable to CAD engineers working in Logic Design, Logic Optimization, and Verification. Engineers seeking opportunities for optimizing VLSI integrated circuits will find this book as an invaluable reference, since there is no existing book that covers this material in a systematic fashion.
Dealing with environmental issues should no longer be considered simply as a cost of doing business. Effective environmental improvements to a company's products and services can be turned into business opportunities. This book was written with the express purpose of helping managers of companies, in particular of Small to Medium sized Enterprises (SMEs), to better deal with environmental challenges and address customer requirements, all in order to turn their environmental inve- ments into competitive market advantages. Several examples are provided throughout the book, but also warning signs (Alert Boxes). These "Alerts" are posted to help managers avoid typical traps when working with environmental considerations in business processes. The authors have many years of experience in the various aspects of impleme- ing Ecodesign. This experience includes working in industry for many years; le- ing the environmental departments in a multinational company; managing research projects in eco-product development; Life Cycle Assessment; and national and international environmental communication and marketing. This book is the latest in a series. The 2002 "Ecodesign Pilot" introduced a tool and software to help design more environmentally compatible products. It was directed specifically at designers. The 2004 book, "Ecodesign Implementation," was written to help project managers optimize product development processes from an environmental perspective.
Grounded in the user-centered design movement, this book offers a broad consideration of how our civilization has evolved its technical infrastructure for human purpose to help us make sense of the contemporary world of information infrastructure and online existence. The author incorporates historical, cultural and aesthetic approaches to situating information and its underlying technologies across time in the collective, lived experiences of humanity. In today's digital information world, user experience is vital to the success of any product or service. Yet as the user population expands to include us all, designing for people who vary in skills, abilities, preferences and backgrounds is challenging. This book provides an integrated understanding of users, and the methods that have evolved to identify usability challenges, that can facilitate cohesive and earlier solutions. The book treats information creation and use as a core human behavior based on acts of representation and recording that humans have always practiced. It suggests that the traditional ways of studying information use, with their origins in the distinct layers of social science theories and models is limiting our understanding of what it means to be an information user and hampers our efforts at being truly user-centric in design. Instead, the book offers a way of integrating the knowledge base to support a richer view of use and users in design education and evaluation. Understanding Users is aimed at those studying or practicing user-centered design and anyone interested in learning how people might be better integrated in the design of new technologies to augment human capabilities and experiences.
This book offers psychologists and those who are involved with systems design an overview of changing technology and guidelines for using new techniques in the design and development of systems in the workplace. The first part of the book concerns productivity and cognitive assessment. The papers provide state of the art appraisals of robotic perception, artificial intelligence, knowledge representation, decision making and the control of automation systems. The second part, on systems design research, discusses a number of key applied human factors problems, including supervisory control systems, human workloads, methods of systems design, job aiding, and human factors considerations.
The importance of research and education in design continues to grow. For example, government agencies are gradually increasing funding of design research, and increasing numbers of engineering schools are revising their curricula to emphasize design. This is because of an increasing realization that design is part of the wealth creation of a nation and needs to be better understood and taught. The continuing globalization of industry and trade has required nations to re-examine where their core contributions lie if not in production efficiency. Design is a precursor to manufacturing for phy- cal objects and is the precursor to implementation for virtual objects. At the same time, the need for sustainable development is requiring design of new products and processes, and feeding a movement towards design - novations and inventions. There are now three sources for design research: design computing, design cognition and human-centered information technology. The foun- tions for much of design computing remains artificial intelligence with its focus on ways of representation and on processes that support simulation and generation. Artificial intelligence continues to provide an environm- tally rich paradigm within which design research based on computational constructions can be carried out. Design cognition is founded on concepts from cognitive science, an even newer area than artificial intelligence. It provides tools and methods to study human designers in both laboratory and practice settings.
Ontologies are increasingly recognized as essential tools in information science. Although the concepts are well understood theoretically , the practical implementation of ontologies remains challenging. In this book, researchers in computer science, information systems, ontology engineering, urban planning and design, civil and building engineering, and architecture present an interdisciplinary study of ontology engineering and its application in urban development projects. The first part of the book introduces the general notion of ontology, describing variations in abstraction level, coverage, and formality. It also discusses the use of ontologies to achieve interoperability, and to represent multiple points of view and multilingualism. This is illustrated with examples from the urban domain. The second part is specific to urban development. It covers spatial and geographical knowledge representation, the creation of urban ontologies from various knowledge sources, the interconnection of urban models and the interaction between standards and domain models. The third part presents case studies of the development of ontologies for urban mobility, urban morphological processes, road systems, and cultural heritage. Other cases report on the use of ontologies to solve urban development problems, in construction business models, building regulations and urban regeneration. It concludes with a discussion of key challenges for the future deployment of ontologies in this domain. This book bridges the gap between urban practitioners and computer scientists. As the essence of most urban projects lies in making connections between worldviews, ontology development has an important role to play, in promoting interoperability between data sources, both formal (urban databases, Building Integrated Models, Geographical Information Systems etc.) and less formal (thesauri, text records, web sources etc.). This volume offers a comprehensive introduction to ontology engineering for urban development. It is essential reading for practitioners and ontology designers working in urban development.
Anthony Dear argues that just-in-time is essentially a philosophy rather than a rigid methodology and that the important thing is to grasp the fundamental ideas involved and then to see where, how and to what extent they can be applied in the context of any particular enterprise. The book is written in a refreshingly direct manner and the discussion focuses on the kind of practical issues which are likely to concern working managers. Illustrated with a wealth of examples drawn from the author's own experience, Working Towards Just-in-Time tackles its subject in a fashion which has direct and immediate relevance to managers of small and medium-sized companies and to middle management in larger firms. This book should be of interest to managers of small and medium-sized companies; middle management in larger firms.
This book deals with the analysis, the design and the implementation of the mechatronic systems. Classical and modern tools are developed for the analysis and the design for such systems. Robust control, H-Infinity and guaranteed cost control theory are also used for analysis and design of mechatronic systems. Different controller such as state feedback, static output feedback and dynamic output feedback controllers are used to stabilize mechatronic systems. Heuristic algorithms are provided to solve the design of the classical controller such as PID, phase lead, phase lag and phase lead-lag controllers while linear matrix inequalities (LMI) algorithms are provided for finding solutions to the state feedback, static output feedback and dynamic output feedback controllers. The theory presented in the different chapters of the volume is applied to numerical examples to show the usefulness of the theoretical results. Some case studies are also provided to show how the developed concepts apply for real system. Emphasis is also put on the implementation in real-time for some real systems that we have developed in our mechatronic laboratory and all the detail is provided to give an idea to the reader how to implement its own mechatronic system. Mechatronics Systems: Analysis, Design and Implementation is an excellent textbook for undergraduate and graduate students in mechatronic system and control theory and as a reference for academic researchers in control or mathematics with interest in control theory. The reader should have completed first-year graduate courses in control theory, linear algebra, and linear systems. It will also be of great value to engineers practising in fields where the systems can be modeled by linear time invariant systems.
With the unprecedented advancements in computing power coupled with the societal movement towards inclusive settings, there is no better time than today to strive for assistive technology equity in terms of universal implementation within a transdisciplinary perspective. The Handbook of Research on Human Cognition and Assistive Technology: Design, Accessibility and Transdisciplinary Perspectives marks a critical milestone in the history of implementation and practice of assistive technology. The intent of this book is to assist researchers, practitioners, and the users of assistive technology to augment the accessibility of assistive technology by implementing human cognition into its design and practice. Consequently, this book presents assistive technology as an intervention for people with disabilities from a transdisciplinary perspective.
Originally published in 1967, this title reveals how the missionaries, so often misguided and short-sighted, were in fact pioneers of modernization, science and freedom. The structure of the book allows for comparative analysis and the volume illustrates how some of the social consequences of action through the schools could be foreseen. In addition light is thrown on the results of Imperial rule during the nineteenth century and on the nature of the impact of Western education in Asia and Africa.
IFIP Working Group 5.2 has organized a series of workshops aimed at presenting and discussing current issues and future perspectives of Geometric Modeling in the CAD environment. From Geometric Modeling to Shape Modeling comprises the proceedings of the seventh GEO workshop, which was sponsored by the International Federation for Information Processing (IFIP) and held in Parma, Italy in October 2000. The workshop looked at new paradigms for CAD including the evolution of geometric-centric CAD systems, modeling of non-rigid materials, shape modeling, geometric modeling and virtual prototyping, and new methods of interaction with geometric models. The seventeen included papers provide an interesting overview of the evolution of geometric centric modeling into shape modeling. Also included is an invited speaker paper, which discusses the foundation of the next generation of CAD systems, where shape and function enhance geometric descriptions. The main topics discussed in the book are: Theoretical foundation for solids and surfaces; Computational basis for geometric modeling; Methods of interaction with geometric models; Industrial and other applications of geometric modeling; New paradigms of geometric modeling for CAD; Shape modeling. From Geometric Modeling to Shape Modeling is essential reading for researchers, graduate and postgraduate students, systems developers of advanced computer-aided design and manufacturing systems, and engineers involved in industrial applications. |
You may like...
Mastercam 2023 for SolidWorks Black Book…
Gaurav Verma, Matt Weber
Hardcover
R2,311
Discovery Miles 23 110
Introduction to Quality by Design for…
Nilesh Desai, Manohar a Potdar
Hardcover
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
SolidWorks Simulation 2022 Black Book…
Gaurav Verma, Matt Weber
Hardcover
R1,640
Discovery Miles 16 400
|