![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Technical design
This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads. Chapter 8 gives a cost comparison of cylindrical and conical shells. The book contains a large collection of literatures and a subject list and a name index.
This book presents the technical program of the International Embedded Systems Symposium (IESS) 2009. Timely topics, techniques and trends in embedded system design are covered by the chapters in this volume, including modelling, simulation, verification, test, scheduling, platforms and processors. Particular emphasis is paid to automotive systems and wireless sensor networks. Sets of actual case studies in the area of embedded system design are also included. Over recent years, embedded systems have gained an enormous amount of proce- ing power and functionality and now enter numerous application areas, due to the fact that many of the formerly external components can now be integrated into a single System-on-Chip. This tendency has resulted in a dramatic reduction in the size and cost of embedded systems. As a unique technology, the design of embedded systems is an essential element of many innovations. Embedded systems meet their performance goals, including real-time constraints, through a combination of special-purpose hardware and software components tailored to the system requirements. Both the development of new features and the reuse of existing intellectual property components are essential to keeping up with ever more demanding customer requirements. Furthermore, design complexities are steadily growing with an increasing number of components that have to cooperate properly. Embedded system designers have to cope with multiple goals and constraints simul- neously, including timing, power, reliability, dependability, maintenance, packaging and, last but not least, price.
Nowadays, engineering systems are of ever-increasing complexity and must be c- sidered asmultidisciplinary systems composed of interacting subsystems or system components from different engineering disciplines. Thus, an integration of various engineering disciplines, e.g, mechanical, electrical and control engineering in ac- current design approach is required. With regard to the systematic development and analysis of system models, interdisciplinary computer aided methodologies are - coming more and more important. A graphical description formalism particularly suited for multidisciplinary s- tems arebondgraphs devised by Professor Henry Paynter in as early as 1959 at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, USA and in use since then all over the world. This monograph is devoted exclusively to the bond graph methodology. It gives a comprehensive, in-depth, state-of-the-art presentation including recent results sc- tered over research articles and dissertations and research contributions by the - thor to a number of topics. The book systematically covers the fundamentals of developing bond graphs and deriving mathematical models from them, the recent developments in meth- ology, symbolic and numerical processing of mathematical models derived from bond graphs. Additionally it discusses modern modelling languages, the paradigm of object-oriented modelling, modern software that can be used for building and for processing of bond graph models, and provides a chapter with small case studies illustrating various applications of the methodology
This first volume of the updated and extended 3rd edition of this work covers the basic chemistry and technology of oligo-polyol fabrication, the characteristics of the various oligo-polyol families and the effects of their structure on the properties of the resulting PU. This book is of interest to chemists and engineers in industry and academia as well as anyone working with polyols for the manufacture of PUs.
Innovation in Product Design gives an overview of the research fields and achievements in the development of methods and tools for product design and innovation. It presents contributions from experts in many different fields covering a variety of research topics related to product development and innovation. Product lifecycle management, knowledge management, product customization, topological optimization, product virtualization, systematic innovation, virtual humans, design and engineering, and rapid prototyping are the key research areas described in the book. It also details successful case studies developed with industrial companies. Innovation in Product Design is written for academic researchers, graduate students and professionals in product development disciplines who are interested in understanding how novel methodologies and technologies can make the product development process more efficient.
Mechatronics in Action s case-study approach provides the most effective means of illustrating how mechatronics can make products and systems more flexible, more responsive and possess higher levels of functionality than would otherwise be possible. The series of case studies serves to illustrate how a mechatronic approach has been used to achieve enhanced performance through the transfer of functionality from the mechanical domain to electronics and software. Mechatronics in Action not only provides readers with access to a range of case studies, and the experts view of these, but also offers case studies in course design and development to support tutors in making the best and most effective use of the technical coverage provided. It provides, in an easily accessible form, a means of increasing the understanding of the mechatronic concept, while giving both students and tutors substantial technical insight into how this concept has been developed and used.
The textbook provides both beginner and experienced CAD users with the math behind the CAD. The geometry tools introduced here help the reader exploit commercial CAD software to its fullest extent. In fact, the book enables the reader to go beyond what CAD software packages offer in their menus. Chapter 1 summarizes the basic Linear and Vector Algebra pertinent to vectors in 3D, with some novelties: the 2D form of the vector product and the manipulation of "larger" matrices and vectors by means of block-partitioning of larger arrays. In chapter 2 the relations among points, lines and curves in the plane are revised accordingly; the difference between curves representing functions and their geometric counterparts is emphasized. Geometric objects in 3D, namely, points, planes, lines and surfaces are the subject of chapter 3; of the latter, only quadrics are studied, to keep the discussion at an elementary level, but the interested reader is guided to the literature on splines. The concept of affine transformations, at the core of CAD software, is introduced in chapter 4, which includes applications of these transformations to the synthesis of curves and surfaces that would be extremely cumbersome to produce otherwise. The book, catering to various disciplines such as engineering, graphic design, animation and architecture, is kept discipline-independent, while including examples of interest to the various disciplines. Furthermore, the book can be an invaluable complement to undergraduate lectures on CAD.
Design exibility and power consumption in addition to the cost, have always been the most important issues in design of integrated circuits (ICs), and are the main concerns of this research, as well. Energy Consumptions: Power dissipation (P ) and energy consumption are - diss pecially importantwhen there is a limited amountof power budgetor limited source of energy. Very common examples are portable systems where the battery life time depends on system power consumption. Many different techniques have been - veloped to reduce or manage the circuit power consumption in this type of systems. Ultra-low power (ULP) applications are another examples where power dissipation is the primary design issue. In such applications, the power budget is so restricted that very special circuit and system level design techniquesare needed to satisfy the requirements. Circuits employed in applications such as wireless sensor networks (WSN), wearable battery powered systems [1], and implantable circuits for biol- ical applications need to consume very low amount of power such that the entire system can survive for a very long time without the need for changingor recharging battery[2-4]. Using newpowersupplytechniquessuchas energyharvesting[5]and printable batteries [6], is another reason for reducing power dissipation. Devel- ing special design techniques for implementing low power circuits [7-9], as well as dynamic power management (DPM) schemes [10] are the two main approaches to control the system power consumption. Design Flexibility: Design exibility is the other important issue in modern in- grated systems.
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinearities introduced by pendulum motion may change the system dynamics, and entail a rapid increase of the oscillations of both the structure and the pendulum, leading to full pendulum rotation or chaotic dynamics. To magnetorheological damping is proposed. Nonlinear mechanics has to be used to explain undesired response in slender footbridges, such as that occurred in the famous event of the London Millenium Bridge. The observed phenomena can be explained by an analytical nonlinear discrete-time model. Shape memory alloys (SMAs) exhibit very interesting nonlinear thermo-mechanical properties such as shape memory effect and superelasticity. SMA elements integrated within composite beams or plates can be used for active modification of structure properties e.g. by affecting their natural frequencies. Finite amplitude, resonant, forced dynamics of sagged, horizontal or inclined, elastic cables have recently undergone meaningful research advances concerned with modelling, analysis, response, and nonlinear/nonregular phenomena. A variety of features of nonlinear multimodal interaction in different resonance conditions are comparatively addressed. Non-smooth systems are very common in engineering practice. Three mechanical engineering problems are presented: (i) a vibro-impact system in the form of a moling device, (ii) the influence of the opening and closing of a fatigue crack on the host system dynamics, and (iii) nonlinear interactions between a rotor and snubber ring system. This book is aimed at a wide audience of engineers and researchers working in the field of nonlinear structural vibrations and dynamics, and undergraduate and postgraduate students reading mechanical, aerospace and civil engineering.
Systems engineering is a mandatory approach in some industries, and is gaining wider acceptance for complex projects in general. However, under the imperative of delivering these projects on time and within budget, the focus has been mainly on the management aspects, with less attention to improving the core engineering activity - design. This book addresses the application of the system concept to design in several ways: by developing a deeper understanding of the system concept, by defining design and its characteristics within the process of engineering, and by applying the system concept to the early stage of design, where it has the greatest impact. A central theme of the book is that the purpose of engineering is to be useful in meeting the needs of society, and that therefore the ultimate measure of the benefit of applying the system concept should be the extent to which it advances the achievement of that purpose. Consequently, any consistent, top-down development of the functionality required of a solution to the problem of meeting a defined need must proceed from such a measure, and it is agued that a generalised form of Return on Investment is an appropriate measure. A theoretical framework for the development of functionality based on this measure and utilising the system concept is presented, together with some examples and practical guidelines.
The most significant articles from each of the fields represented at the conference on Work with Display Units 1992 are presented in this volume. Such topics are:
Featuring original research from well-known experts in the field of sliding mode control, this book presents new design schemes for a useful and practical optimal control with very few impractical assumptions. The results presented allow optimal control theory to grow in its applicability to real-world systems. On the cutting-edge of optimal control research, this book is an excellent resource for both graduate students and researchers in engineering, mathematics, and optimal control.
This book presents novel research techniques, algorithms, methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design.
III European Conference on Computational Mechanics: Solids, Structures and Coupled Problem in Engineering Computational Mechanics in Solid, Structures and Coupled Problems in Engineering is today a mature science with applications to major industrial projects. This book contains the edited version of the Abstracts of Plenary and Keynote Lectures and Papers, and a companion CD-ROM with the full-length papers, presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal 5th - 8th June 2006. The book reflects the state-of-art of Computation Mechanics in Solids, Structures and Coupled Problems in Engineering and it includes contributions by the world most active researchers in this field.
This illuminating text/reference presents a review of the key aspects of the modeling and simulation (M&S) life cycle, and examines the challenges of M&S in different application areas. The authoritative work offers valuable perspectives on the future of research in M&S, and its role in engineering complex systems. Topics and features: reviews the challenges of M&S for urban infrastructure, healthcare delivery, automated vehicle manufacturing, deep space missions, and acquisitions enterprise; outlines research issues relating to conceptual modeling, covering the development of explicit and unambiguous models, communication and decision-making, and architecture and services; considers key computational challenges in the execution of simulation models, in order to best exploit emerging computing platforms and technologies; examines efforts to understand and manage uncertainty inherent in M&S processes, and how these can be unified under a consistent theoretical and philosophical foundation; discusses the reuse of models and simulations to accelerate the simulation model development process. This thought-provoking volume offers important insights for all researchers involved in modeling and simulation across the full spectrum of disciplines and applications, defining a common research agenda to support the entire M&S research community.
This book presents the latest research on mechatronic systems engineering. By bringing together the most important papers from the 2018 Mechatronics Forum Conference 'Reinventing Mechatronics,' it outlines key trends in research and applications that will define mechatronics for the next 50 years. Mechatronics was established as an engineering discipline over 50 years ago, as the integration of electronics and information technology with mechanical design. Given major technological advances and the growth of systems-level concepts such as Cyber-Physical Systems and the Internet of Things, along with Cloud Technologies and Big Data, it's now high time to reconsider the role of mechatronics, particularly within engineering design. Past and ongoing technological changes are impacting how systems are designed and configured in ways that could never have been envisaged when the field of mechatronics was first introduced.
This book describes CoSMoS (Complex Systems Modelling and Simulation), a pattern-based approach to engineering trustworthy simulations that are both scientifically useful to the researcher and scientifically credible to third parties. This approach emphasises three key aspects to this development of a simulation as a scientific instrument: the use of explicit models to capture the scientific domain, the engineered simulation platform, and the experimental results of running simulations; the use of arguments to provide evidence that the scientific instrument is fit for purpose; and the close co-working of domain scientists and simulation software engineers. In Part I the authors provide a managerial overview: the rationale for and benefits of using the CoSMoS approach, and a small worked example to demonstrate it in action. Part II is a catalogue of the core patterns. Part III lists more specific "helper" patterns, showing possible routes to a simulation. Finally Part IV documents CellBranch, a substantial case study developed using the CoSMoS approach.
Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, Microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.
Digital factory is a comprehensive approach providing methodologies, models and tools that support manufacturing enterprises in the rearrangement of their organizational structures to deal with expected changes in manufacturing processes and markets. Digital Factory for Human-oriented Production Systems investigates the impact of the digital factory through a consideration of the entire product/process lifecycle, and the broad network of product engineering, material and component suppliers, manufacturing equipment suppliers, and customers involved in current and next generation manufacturing. It covers the utilization and integration of: human body ergonomics models; production system discrete event simulation; 3D/virtual and augmented reality visualization; collaborative design tools; automatic data capture; and knowledge management systems based on semantic web ontologies integrated by a continuous data management. The coverage of various types of factory and manufacturing phases, representations and simulations allows researchers in academia and industry to perform a dynamic analysis and up-to-date modeling of the processes involved. Digital Factory for Human-oriented Production Systems describes the tools that allow a move towards the integrated digital factory and underlines the business impact that companies can obtain by adopting these tools. As well as benefiting international organizations, the proposed methodologies and technologies have also been developed in order to facilitate their adoption by small or medium-sized businesses, making them relevant to all product engineers and managers who want improve the efficiency and effectiveness of their enterprises.
This book details the state-of-the-art of research and development in design computing and design cognition. It features more than 35 papers that were presented at the Sixth International Conference on Design Computing and Cognition, DCC'14, held at University College, London, UK. Inside, readers will find the work of expert researchers and practitioners that explores both advances in theory and application as well as demonstrates the depth and breadth of design computing and design cognition. This interdisciplinary coverage, which includes material from international research groups, examines design synthesis, design cognition, design creativity, design processes, design theory, design grammars, design support and design ideation. Overall, the papers provide a bridge between design computing and design cognition. The confluence of these two fields continues to build the foundation for further advances and leads to an increased understanding of design as an activity whose influence continues to spread. As a result, the book will be of particular interest to researchers, developers and users of advanced computation in design and those who need to gain a better understanding of designing that can be obtained through empirical studies.
Fundamentals of Switching Theory and Logic Design discusses the basics of switching theory and logic design from a slightly alternative point of view and also presents links between switching theory and related areas of signal processing and system theory. Switching theory is a branch of applied mathematic providing mathematical foundations for logic design, which can be considered as a part of digital system design concerning realizations of systems whose inputs and outputs are described by logic functions.
A comprehensive review of international and national standards and guidelines, this handbook consists of 32 chapters divided into nine sections that cover standardization efforts, anthropometry and working postures, designing manual material, human-computer interaction, occupational health and safety, legal protection, military human factor standards, and sources for human factors and ergonomics standards. The book delineates the role standards and guidelines play in facilitating the design and optimal working conditions in regards to occupational safety and health as well as system performance in the context of technological advances and opportunities for economic development worldwide.
Product Realization: A Comprehensive Approach is based on selected papers presented at the International Conference on Comprehensive Product Realization 2007 (ICCPR2007). The extended papers will provide the opportunity for scholars from all around the world to discuss their academic programs, identify research opportunities, and initiate joint research programs in the area of comprehensive product realization. Engineering design has evolved from an isolated semi-empirical activity to a highly interconnected, multidisciplinary product realization collaborative process. The scope of the book will focus on a number of themes within the framework of the conference that are deemed essential to educating the next generation of students and practicing engineers in the area of product realization.
This book provides extensive information on the key technical design disciplines, education programs, international best practices and modes of delivery that are aimed at preparing a trans-disciplinary design workforce for the future. It also presents a comprehensive overview of the scope of, and state of the art in, design education. The book highlights signature design education programs from around the globe and across all levels, in both traditional and distance learning settings. Additionally, it discusses professional societies for designers and design educators, as well as the current standards for professional registration, and program accreditation. Reflecting recent advances and emerging trends, it offers a valuable handbook for design practitioners and managers, curriculum designers and program leaders alike. It will also be of interest to students and academics looking to develop a career related to the more technical aspects of design.
This book examines the paradigm of the engineering design process. The author discusses agile systems and engineering design. The book captures the entire design process (function bases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. Captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management. |
![]() ![]() You may like...
Key Technologies of Intelligentized…
Zongyao Chen, Zhili Feng, …
Hardcover
R2,873
Discovery Miles 28 730
Computing with Data - An Introduction to…
Guy Lebanon, Mohamed El-Geish
Hardcover
R2,907
Discovery Miles 29 070
Software Engineering for Robotics
Ana Cavalcanti, Brijesh Dongol, …
Hardcover
R3,456
Discovery Miles 34 560
Cyber-Physical Systems - AI and COVID-19
Ramesh Poonia, Basant Agarwal, …
Paperback
R2,992
Discovery Miles 29 920
Emotion Recognition and Understanding…
Luefeng Chen, Min Wu, …
Hardcover
R4,928
Discovery Miles 49 280
Relational Methodologies and…
Lucio Biggiero, Pier Paolo Angelini, …
Hardcover
R5,557
Discovery Miles 55 570
Deep Learning - Research and…
Siddhartha Bhattacharyya, Vaclav Snasel, …
Hardcover
R4,094
Discovery Miles 40 940
Toward Humanoid Robots: The Role of…
Cengiz Kahraman, Eda Bolturk
Hardcover
R6,354
Discovery Miles 63 540
Robotics for Cell Manipulation and…
Changsheng Dai, Guanqiao Shan, …
Paperback
R3,134
Discovery Miles 31 340
|