![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design
This book introduces state-of-the-art models and methods based on the matrix in the field of product design and change management. It develops several types of matrix models for a broad range of applications, with the goal of efficiently finding product design solutions and proactively analyzing design change propagation. The book offers readers an extensive introduction to design automation, highlighting fundamental and innovative concepts, as well as cutting-edge technologies. Further, it familiarizes them with the latest advances in design change propagation and prediction. Lastly, the book puts forward design change-oriented matrix models and includes a proactive analysis of change propagation. The book offers a valuable resource for graduate students, researchers and engineers in the fields of product design and methodology, design automation and related areas.
This book broadens readers' understanding of proactive condition monitoring of low- speed machines in heavy industries. It focuses on why low-speed machines are different than others and how maintenance of these machines should be implemented with particular attention. The authors explain the best available monitoring techniques for various equipment and the principle of how to get proactive information from each technique. They further put forward possible strategies for application of FEM for detection of faults and technical assessment of machinery. Implementation phases are described and industrial case studies of proactive condition monitoring are included. Proactive Condition Monitoring of Low-Speed Machines is an essential resource for engineers and technical managers across a range of industries as well as design engineers working in industrial product development.
This book provides novel insights into two fundamental subjects in solid mechanics: virtual work and shape change. The author explains how the principle of virtual work represents a tool for analysis of the mechanical effects of the evolution of the shape of a system, how it can be applied to observations and experiments, and how it may be adapted to produce predictive theories of numerous phenomena. The book is divided into three parts. The first relates the principle of virtual work to what we observe with our eyes, the second demonstrates its flexibility on the basis of many examples, and the third applies the principle to predict the motion of solids with large deformations. Examples of both usual and unusual shape changes are presented, and equations of motion, some of which are entirely new, are derived for smooth and non-smooth motions associated with, for instance, systems of disks, systems of balls, classical and non-classical small deformation theories, systems involving volume and surface damage, systems with interactions at a distance (e.g., solids reinforced by fibers), systems involving porosity, collisions, and fracturing of solids.
This is the proceedings of the Eighth International Conference on Design Computing and Cognition (DCC'18) held at the Polytecnico di Milano in Italy. This volume presents both advances in theory and applications and demonstrates the depth and breadth of design computing and design cognition. Design thinking, the label given to the acts of designing, has become a paradigmatic view that has transcended the discipline of design and is now widely used in business and elsewhere. As a consequence there is an increasing interest in design research. This volume contains papers that represent the state-of-the-art research and developments in design computing and design cognition. This book is of particular interest to researchers, developers and users of advanced computation in design and those who need to gain a better understanding of designing that can be obtained through empirical studies.
This book clarifies the common misconception that there are no systematic instruments to support ideation, heuristics and creativity. Using a collection of articles from professionals practicing the Theory of Inventive Problem Solving (TRIZ), this book presents an overview of current trends and enhancements within TRIZ in an international context, and shows its different roles in enhancing creativity for innovation in research and practice. Since its first introduction by Genrikh Saulovich Altshuller in 1956 in the USSR, the TRIZ method has been widely used by inventors, design engineers and has become a standard element of innovation support tools in many Fortune 500 companies. However, TRIZ has only recently entered the domain of scientific publications and discussion. This collection of articles is meant as a record of scientific discussion on TRIZ that reflects the most interesting talking points, research interests, results and expectations. Topics such as Creative and Inventive Design, Patent Mining, and Knowledge Harvesting are also covered in this book.
This work focuses on the fundamentals of MMCs for engineers and designers. The new edition addresses new issues and developments in the areas of automotive, aerospace, electronics and consumer applications. These include continuous fiber reinforced MMCs for cables in power transmission, high temperature superconducting wires, particulate MMCs in civilian aircraft and automotive applications, and high volume fraction, high thermal conductivity substrates for electronic packaging. The coverage is thorough and cohesive, and emphasizes the synergistic relationships among processing, structure and properties of metal matrix composites.
Origami structures have the ability to be easily fabricated from planar forms, enable the deployment of large structures from small volumes, and are potentially reconfigurable. These characteristics have led to an increased interest in theoretical and computational origami among engineers from across the world. In this book, the principles of origami, active materials, and solid mechanics are combined to present a full theory for origami structures. The focus is on origami structures morphed via active material actuation and formed from sheets of finite thickness. The detailed theoretical derivations and examples make this an ideal book for engineers and advanced students who aim to use origami principles to develop new applications in their field.
This book is based on the proceedings of the Fifth International Conference on Vision in Vehicles. The aim of the conference series is to enable international researchers from different disciplines to meet and exchange ideas on the current state-of-the-art of all aspects related to vehicles and vehicle controllers. This is perceived as encompassing the internal and external design of a vehicle, the environment in which vehicles move, as well as the visual, perceptual and cognitive limitations of the vehicle controller. All types of vehicles (including underground mining vehicles, helicopters, trains and motorcycles) are considered, though the majority of papers deal with automobiles and their drivers. The conference keynote address Automated Highways: A Vision of the Future, which was presented by John Bloomfield, set the tone for the meeting. The proceedings, as contained in this volume, begin in a similar vein with chapters considering Simulation Studies of Driver Performance, followed by a section on Visual Processing and Collision Avoidance. Cognitive issues are addressed in several chapters detailing recent work on Cognitive Aspects of Visual Information Processing. The growing use of information technology is covered in two subsequent sections concerning firstly, the Visual Requirements of In-Vehicle Guidance Systems and secondly, Driver Support Systems. Environmental factors are discussed in a separate section, as is driver's own visual impairment. The final section concerns Arousal and Performance and discusses alcohol effects on driving ability. Vision in Vehicles V, with contributions by experts from a diverse range of disciplines, including optometrists, psychologists, physiologists, human factors specialists and engineers, will undoubtedly stimulate the progression of research in this area.
Ever since the first successful International Cognitive Technology (CT) Conference in Hong Kong in August 1995, a growing concern about the dehumanising potential of machines, and the machining potential of the human mind, has pervaded the organisers' thinking. When setting up the agenda for the Second International CT Conference in Aizu, Japan, in August of 1997, they were aware that a number of new approaches had seen the light, but that the need to integrate them within a human framework had become more urgent than ever, due to the accelerating pace of technological and commercialised developments in the computer related fields of industry and research
For courses in design engineering Applying Design Concepts for All Engineers Design Concepts for Engineers introduces engineering students to the basic concepts and principles of design and their application to engineering disciplines. This general text provides a platform through which all engineers can understand major concepts, despite their specialty backgrounds. With a focus on the design process rather than the technical details of a specific engineering field, the Eighth Edition connects with a wide range of readers. Design Concepts for Engineers is a versatile text that can be taught to both introductory and higher level students as either a comprehensive material or in its distinct chapter modules. With knowledge of basic algebra, any engineer can explore and understand this enticing text, making it an ideal source material to reach a wide range of audiences.
Industrial Applications of Affective Engineering introduces new analytical methods such as fluctuation, fuzzy logic, fractals, and complex systems, and pursuing interdisciplinary research that traverses a wide range of fields, including information engineering, human engineering, cognitive science, psychology, and design studies. The book is split into two parts: theory and applications. The book is a collection of the best papers from ISAE2013 (International Symposium of Affective Engineering) held at Kitakyushu, Japan and Japan Kansei Engineering Meeting on March 6-8, 2013.
The book includes peer-reviewed contributions selected from presentations given at the Istanbul Bridge Conference 2014, held from August 11 - 13 in Istanbul, Turkey. It reports on the current challenges in bridge engineering faced by professionals around the globe, giving a special emphasis to recently developed techniques, innovations and opportunities. The book covers key topics in the field, including modeling and analysis methods; construction and erection techniques; design for extreme events and condition assessment and structural health monitoring. There is a balanced presentation of theory, research and practice. This book, which provides the readers with a comprehensive and timely reference guide on current practices in bridge engineering, is intended for professionals, academic researchers and students alike.
This book introduces a stability and control methodology named AeroMech, capable of sizing the primary control effectors of fixed wing subsonic to hypersonic designs of conventional and unconventional configuration layout. Control power demands are harmonized with static-, dynamic-, and maneuver stability requirements, while taking the six-degree-of-freedom trim state into account. The stability and control analysis solves the static- and dynamic equations of motion combined with non-linear vortex lattice aerodynamics for analysis. The true complexity of addressing subsonic to hypersonic vehicle stability and control during the conceptual design phase is hidden in the objective to develop a generic (vehicle configuration independent) methodology concept. The inclusion of geometrically asymmetric aircraft layouts, in addition to the reasonably well-known symmetric aircraft types, contributes significantly to the overall technical complexity and level of abstraction. The first three chapters describe the preparatory work invested along with the research strategy devised, thereby placing strong emphasis on systematic and thorough knowledge utilization. The engineering-scientific method itself is derived throughout the second half of the book. This book offers a unique aerospace vehicle configuration independent (generic) methodology and mathematical algorithm. The approach satisfies the initial technical quest: How to develop a 'configuration stability & control' methodology module for an advanced multi-disciplinary aerospace vehicle design synthesis environment that permits consistent aerospace vehicle design evaluations?
'Inclusive Designing' presents the proceedings of the seventh Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT '14). It represents a unique multi-disciplinary workshop for the Inclusive Design Research community where designers, computer scientists, engineers, architects, ergonomists, policymakers and user communities can exchange ideas. The research presented at CWUAAT '14 develops methods, technologies, tools and guidance that support product designers and architects to design for the widest possible population for a given range of capabilities, within a contemporary social and economic context. In the context of developing demographic changes leading to greater numbers of older people and people with disabilities, the general field of Inclusive Design Research strives to relate the capabilities of the population to the design of products. Inclusive populations of older people contain a greater variation in sensory, cognitive and physical user capabilities. These variations may be co-occurring and rapidly changing leading to a demanding design environment. Recent research developments have addressed these issues in the context of: governance and policy; daily living activities; the workplace; the built environment, Interactive Digital TV and Mobile communications. Increasingly, a need has been identified for a multidisciplinary approach that reconciles the diverse and sometimes conflicting demands of Design for Ageing and Impairment, Usability and Accessibility and Universal Access. CWUAAT provides a platform for such a need. This book is intended for researchers, postgraduates, design practitioners, clinical practitioners, and design teachers.
The papers in this volume start with a description of the construction of reduced models through a review of Proper Orthogonal Decomposition (POD) and reduced basis models, including their mathematical foundations and some challenging applications, then followed by a description of a new generation of simulation strategies based on the use of separated representations (space-parameters, space-time, space-time-parameters, space-space,...), which have led to what is known as Proper Generalized Decomposition (PGD) techniques. The models can be enriched by treating parameters as additional coordinates, leading to fast and inexpensive online calculations based on richer offline parametric solutions. Separated representations are analyzed in detail in the course, from their mathematical foundations to their most spectacular applications. It is also shown how such an approximation could evolve into a new paradigm in computational science, enabling one to circumvent various computational issues in a vast array of applications in engineering science.
The "2019 DigitalFUTURES - The 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)" provides an international platform for advanced scientific research papers on the digital technology of architectural design and construction. The themes of the papers include, but are not limited to, architectural theories, tools, methods and procedures in material intelligence, data intelligence; computational intelligence, and robotic intelligence.
The fourth book of a four-part series, "Design Theory and
Methods using CAD/CAE" integrates discussion of modern engineering
design principles, advanced design tools, and industrial design
practices throughout the design process. This is the first book to
integrate discussion of computer design tools throughout the design
process. Through this book series, the reader will: Understand
basic design principles and all digital modern engineering design
paradigmsUnderstand CAD/CAE/CAM tools available for various design
related tasksUnderstand how to put an integrated system together to
conduct All Digital Design (ADD) product design using the paradigms
and toolsUnderstand industrial practices in employing ADD virtual
engineering design and tools for product development
Including papers from the 9th edition of the International Conference on Computational Methods and Experiments in Material and Contact Characterisation this volume presents the work of selected researchers on the subject. Material and contact characterisation is a rapidly advancing field and this volume contains the latest research. Of particular interest to industry and society is the knowledge of surface treatment and contact mechanics of these materials to determine the in-service behaviour of components subject to contact conditions. Modern society requires systems that operate at conditions that use resources effectively. In terms of components durability, the understanding of surface engineering wear frictional and lubrication dynamics has never been so important. Current research is focussed on modification technologies that can increase the surface durability of materials. The characteristics of the system reveal which surface engineering methods should be chosen and as a consequence it is essential to study the combination of surface treatment and contact mechanics. The accurate characterisation of the physical and chemical properties of materials requires the application of both experimental techniques and computer simulation methods in order to gain a correct analysis. A very wide range of materials, starting with metals through polymers and semiconductors to composites, necessitates a whole spectrum of characteristic experimental techniques and research methods. The papers in the book cover a number of topics, including: Experimental approaches; Recycled materials; Metallic materials; Mechanical properties; Mechanical and thermal properties; Composite materials; Materials for bioengineering applications; Performance based design materials and Numerical models.
This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft's structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relevant design issues and provides a relevant case study for modeling and control engineers in many adjacent disciplines and applications. Modeling and Control for a Blended Wing Body Aircraft presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents a new, multidisciplinary perspective on and paradigm for integrative experimental design research. It addresses various perspectives on methods, analysis and overall research approach, and how they can be synthesized to advance understanding of design. It explores the foundations of experimental approaches and their utility in this domain, and brings together analytical approaches to promote an integrated understanding. The book also investigates where these approaches lead to and how they link design research more fully with other disciplines (e.g. psychology, cognition, sociology, computer science, management). Above all, the book emphasizes the integrative nature of design research in terms of the methods, theories, and units of study-from the individual to the organizational level. Although this approach offers many advantages, it has inherently led to a situation in current research practice where methods are diverging and integration between individual, team and organizational understanding is becoming increasingly tenuous, calling for a multidisciplinary and transdiscipinary perspective. Experimental design research thus offers a powerful tool and platform for resolving these challenges. Providing an invaluable resource for the design research community, this book paves the way for the next generation of researchers in the field by bridging methods and methodology. As such, it will especially benefit postgraduate students and researchers in design research, as well as engineering designers.
Wide aspects of a university education address design: the conceptualization, planning and implementation of man-made artifacts. All areas of engineering, parts of computer science and of course architecture and industrial design all claim to teach design. Yet the education of design tends ot follow tacit practices, without explicit assumptions, goals and processes. This book is premised on the belief that design education based on a cognitive science approach can lead to significant improvements in the effectiveness of university design courses and to the future capabilities of practicing designers. This applies to all professional areas of design. The book grew out of publications and a workshop focusing on design education. This volume attempts to outline a framework upon which new efforts in design education might be based. The book includes chapters dealing with six broad aspects of the
study of design education:
Computer Aided Software Engineering (CASE) tools typically support individual users in the automation of a set of tasks within a software development process. Such tools have helped organizations in their efforts to develop better software within budget and time constraints. However, many organizations are failing to take full advantage of CASE technology as they struggle to make coordinated use of collections of tools, often obtained at different times from different vendors. This book provides an in-depth analysis of the CASE tool integration problem, and describes practical approaches that can be used with current CASE technology to help your organization take greater advantage of integrated CASE.
This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into five main categories headed 'Historical Perspectives', 'Kinematics and Mechanisms', 'Robotic Systems', 'Legged Locomotion', and 'Design Engineering Education'. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education. This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.
|
You may like...
Mastercam 2023 for SolidWorks Black Book…
Gaurav Verma, Matt Weber
Hardcover
R2,311
Discovery Miles 23 110
Studying and Designing Technology for…
Tejinder Judge, Carman Neustaedter
Paperback
Sustainability in Engineering Design
Anthony Johnson, Andy Gibson
Paperback
R1,290
Discovery Miles 12 900
|