![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design
Mixed finite element methods are a tool to solve complex engineering problems of different nature. This subject is treated in the volume from the engineering and the mathematical point. Different applications are considered which depict the value of mixed formulations in engineering on one side. On the other side the mathematical background is provided including proofs of convergence and stability of these methods and adequate solvers for mixed problems are discussed. This broad spectrum yields an indepth treatment of mixed methods from different perspectives.
Cognitive Informatics (CI) is the science of cognitive information processing and its applications in cognitive computing. CI is a transdisciplinary enquiry of computer science, information science, cognitive science, and intelligence science that investigates into the internal information processing mechanisms and processes of the brain. Advances and engineering applications of CI have led to the emergence of cognitive computing and the development of Cognitive Computers (CCs) that reason and learn. As initiated by Yingxu Wang and his colleagues, CC has emerged and developed based on the transdisciplinary research in CI, abstract intelligence (aI), and denotational mathematics after the inauguration of the series of IEEE International Conference on Cognitive Informatics since 2002 at Univ. of Calgary, Stanford Univ., and Tsinghua Univ., etc. This volume in LNCS (subseries of Computational Intelligence), LNCI 323, edited by Y. Wang, D. Zhang, and W. Kinsner, presents the latest development in cognitive informatics and cognitive computing. The book focuses on the explanation of cognitive models of the brain, the layered reference model of the brain, the fundamental mechanisms of abstract intelligence, and the implementation of computational intelligence by autonomous inference and learning engines based on CCs.
Technology computer-aided design, or TCAD, is critical to today's semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.
This book presents a domain of extreme industrial and scientific interest: the study of smart systems and structures. It presents polytope projects as comprehensive physical and cognitive architectures that support the investigation, fabrication and implementation of smart systems and structures. These systems feature multifunctional components that can perform sensing, control, and actuation. In light of the fact that devices, tools, methodologies and organizations based on electronics and information technology for automation, specific to the third industrial revolution, are increasingly reaching their limits, it is essential that smart systems be implemented in industry. Polytope projects facilitate the utilization of smart systems and structures as key elements of the fourth industrial revolution. The book begins by presenting polytope projects as a reference architecture for cyber-physical systems and smart systems, before addressing industrial process synthesis in Chapter 2. Flow-sheet trees, cyclic separations and smart configurations for multi-component separations are discussed here. In turn, Chapter 3 highlights periodic features for drug delivery systems and networks of chemical reactions, while Chapter 4 applies conditioned random walks to polymers and smart materials structures. Chapter 5 examines self-assembly and self-reconfiguration at different scales from molecular to micro systems. Smart devices and technologies are the focus of chapter 6. Modular micro reactor systems and timed automata are examined in selected case studies. Chapter 7 focuses on inferential engineering designs, concept-knowledge, relational concept analysis and model driven architecture, while Chapter 8 puts the spotlight on smart manufacturing, industry 4.0, reference architectures and models for new product development and testing. Lastly, Chapter 9 highlights the polytope projects methodology and the prospects for smart systems and structures. Focusing on process engineering and mathematical modeling for the fourth industrial revolution, the book offers a unique resource for engineers, scientists and entrepreneurs working in chemical, biochemical, pharmaceutical, materials science or systems chemistry, students in various domains of production and engineering, and applied mathematicians.
By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. Special features include an emphasis on the interplay of ideas from algebra and geometry and their historical origins, detailed algorithm descriptions, and many figures and worked examples. The book may appeal, in whole or in part, to mathematicians, computer scientists, and engineers.
One of the leading causes of automobile accidents is the slow reaction of the driver while responding to a hazardous situation. State-of-the-art wireless electronics can automate several driving functions, leading to significant reduction in human error and improvement in vehicle safety. With continuous transistor scaling, silicon fabrication technology now has the potential to substantially reduce the cost of automotive radar sensors. This book bridges an existing gap between information available on dependable system/architecture design and circuit design. It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors. System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.
As Moore 's law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallelization of the computation and 3D integration technologies lead to distributed memory architectures.This book describes recent research that addresses urgent challenges in many-core architectures and application mapping. It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies.
Providing a step-by-step guide for the implementation of virtual manufacturing using Creo Parametric software (formerly known as Pro-Engineer), this book creates an engaging and interactive learning experience for manufacturing engineering students. Featuring graphic illustrations of simulation processes and operations, and written in accessible English to promote user-friendliness, the book covers key topics in the field including: the engraving machining process, face milling, profile milling, surface milling, volume rough milling, expert machining, electric discharge machining (EDM), and area turning using the lathe machining process. Maximising reader insights into how to simulate material removal processes, and how to generate cutter location data and G-codes data, this valuable resource equips undergraduate, postgraduate, BTech and HND students in the fields of manufacturing engineering, computer aided design (CAD) and computer aided engineering (CAE) with transferable skills and knowledge. This book is also intended for technicians, technologists and engineers new to Creo Parametric software.
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms." The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
This work addresses the topic of optical networks cross-layer design with a focus on physical-layer-impairment-aware design. Contributors captures both the physical-layer-aware network design as well as the latest advances in service-layer-aware network design. Treatment of topics such as, optical transmissions which are prone to signal impairments, dense packing of wavelengths, dispersion, crosstalk, etc., as well as how to design the network to mitigate such impairments, are all covered.
This book covers the foundations and successes of Neuroergonomics,
combining neuroscience and ergonomics to enhance efficiency and
safety in work environments. An overview of the essential areas
within the field is given with chapters on brain networks,
perception, attention, and performance.
Geological models used in predictive hydrogeological modeling are not exact replicas of the objects they represent: many details related to structures and properties of the objects remain unknown. Those details may considerably affect simulation results.A provable evaluation of the uncertainty of hydrogeological and solute transport simulations are almost impossible. In this book the author describes how to obtain the best-possible results in simulations, based on the available data and predefined criteria that are turned into transforming mechanisms. The latterare mathematical expressions for evaluating model parameters supporting effective simulations. Examples of the mechanisms as well as methods of their evaluation are provided in this book. It is also shown how these mechanisms can be used for the interpretation of hydrogeological data.The first edition of this book was published in the series "Springer Briefs in Earth Sciences.""
This volume contains contributions illuminating much of the current research occurring in the area of visual perception. It encompasses all aspects of vision and its relationship to vehicle design, including both the internal and external design of the vehicle as well as the perceptual and cognitive limitations of the vehicle controller. Issues specifically related to the vision of the driver are initially addressed and the problems of vehicle glazing and light transmission are considered. The major topics of visual perception and vehicle control are covered in three related chapters encompassing: collision avoidance, vehicle signalling systems and the acquisition of visual information. Moving on to the external environment and its relationship to vision, traffic signs are discussed. Approaches to the measurement and modelling of driver behaviour are dealt with and the area of telerobotic control of vehicles is considered. In-vehicle displays are covered in two related chapters addressing issues of visual workload and effects of display type. It is hoped that the book, contributed to by experts from a diverse range of disciplines, including optometrists, psychologists, physiologists, human factors specialists and engineers, will stimulate the progression of research in this area, as effectively as the preceding volumes did.
The Scientific Network of Integrated Systems, Design and Technology (ISDT) is an initiative that has been established to respond industrial needs for integration of " Knowledge Technology" (KT)" with multi- and inter-disciplinary applications. In particular the objective of ISDT is to incorporate multilateral engineering disciplines i.e. Composite-, Automotive-, Industrial-, Control- and Micro-Electronics Engineering, and derive knowledge for design and development of innovative product and services. In this context, the discourse of KT is established to address effective use of Knowledge Management, Semantic Technology, Information Systems and Software Engineering towards evolution of adaptive and intelligent systems for industrial applications. This carefully edited book presents the results of the latest ISDT meeting with special involvement of leading researchers and industries whose contributions are presented in the book chapters. This book consists of three main chapters namely: . Chapter 1: Applied Knowledge Management in Practice . Chapter 2: Semantic Technologies for Industrial Management and Process Controlling . Chapter 3: Knowledge Driven Approaches for Product Engineering Each article presents a unique in-progress research with respect to the target goal of improving our common understanding of KT integration and promoting further researches and cooperation in future.
This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.
This book presents a new set of embedded system design techniques called multidimensional data flow, which combine the various benefits offered by existing methodologies such as block-based system design, high-level simulation, system analysis and polyhedral optimization. It describes a novel architecture for efficient and flexible high-speed communication in hardware that can be used both in manual and automatic system design and that offers various design alternatives, balancing achievable throughput with required hardware size. This book demonstrates multidimensional data flow by showing its potential for modeling, analysis, and synthesis of complex image processing applications. These applications are presented in terms of their fundamental properties and resulting design constraints. Coverage includes a discussion of how far the latter can be met better by multidimensional data flow than alternative approaches. Based on these results, the book explains the principles of fine-grained system level analysis and high-speed communication synthesis. Additionally, an extensive review of related techniques is given in order to show their relation to multidimensional data flow.
Product design is characterized by a steady increase in complexity. The main focus of this book is a structural approach on complexity management. This means, system structures are considered in order to address the challenge of complexity in all aspects of product design. Structures arise from the complex dependencies of system elements. Thus, the identification of system structures provides access to the understanding of system behavior in practical applications. The book presents a methodology that enables the analysis, control and optimization of complex structures, and the applicability of domain-spanning problems. The methodology allows significant improvements on handling system complexity by creating improved system understanding on the one hand and optimizing product design that is robust for system adaptations on the other hand. Developers can thereby enhance project coordination and improve communication between team members and as a result shorten development time. The practical application of the methodology is described by means of two detailed examples.
The integrated and advanced science research topic
Man-Machine-Environment system engineering (MMESE) was first
established in China by Professor Shengzhao Long in 1981, with
direct support from one of the greatest modern Chinese scientists,
Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993,
Xuesen Qian wrote: You have created a very important modern science
and technology in China
The initial motivator for the development of DRM, a Design Research Methodology, and the subsequent writing of this book was our frustration about the lack of a common terminology, benchmarked research methods, and above all, a common research methodology in design. A shared view of the goals and framework for doing design research was missing. Design is a multidisciplinary activity occurring in multiple application areas and involving multiple stakeholders. As a consequence, design research emerges in a variety of disciplines for a variety of applications with a variety of subjects. This makes it particularly difficult to review its literature, relate various pieces of work, find common ground, and validate and share results that are so essential for sustained progress in a research community. Above all, design research needs to be successful not only in an academic sense, but also in a practical sense. How could we help the community develop knowledge that is both academically and practically worthwhile? Each of us had our individual ideas of how this situation could be improved. Lucienne Blessing, while finishing her thesis that involved studying and improving the design process, developed valuable insights about the importance and relationship of empirical studies in developing and evaluating these improvements. Amaresh Chakrabarti, while finishing his thesis on developing and evaluating computational tools for improving products, had developed valuable insights about integrating and improving the processes of building and evaluating tools.
Mixed Reality is moving out of the research-labs into our daily lives. It plays an increasing role in architecture, design and construction. The combination of digital content with reality creates an exciting synergy that sets out to enhance engagement within architectural design and construction. State-of-the-art research projects on theories and applications within Mixed Reality are presented by leading researchers covering topics in architecture, design collaboration, construction and education. They discuss current projects and offer insight into the next wave of Mixed Reality possibilities.
Good product designs merge materials, technology and hardware into a unified user experience; one where the technology recedes into the background and people benefit from the capabilities and experiences available. By focusing on functional gain, critical awareness and emotive connection, even the most multifaceted and complex technology can be made to feel straightforward and become an integral part of daily life. Researchers, designers and developers must understand how to progress or appropriate the right technical and human knowledge to inform their innovations. The 1st International Smart Design conference provides a timely forum and brings together researchers and practitioners to discuss issues, identify challenges and future directions, and share their R&D findings and experiences in the areas of design, materials and technology. This proceedings of the 1st Smart Design conference held at Nottingham Trent University in November 2011 includes summaries of the talks given on topics ranging from intelligent textiles design to pharmaceutical packaging to the impact of social and emotional factors on design choices with the aim of informing and inspiring future application and development of smart design.
This first volume of the updated and extended 3rd edition of this work covers the basic chemistry and technology of oligo-polyol fabrication, the characteristics of the various oligo-polyol families and the effects of their structure on the properties of the resulting PU. This book is of interest to chemists and engineers in industry and academia as well as anyone working with polyols for the manufacture of PUs.
Innovation in Product Design gives an overview of the research fields and achievements in the development of methods and tools for product design and innovation. It presents contributions from experts in many different fields covering a variety of research topics related to product development and innovation. Product lifecycle management, knowledge management, product customization, topological optimization, product virtualization, systematic innovation, virtual humans, design and engineering, and rapid prototyping are the key research areas described in the book. It also details successful case studies developed with industrial companies. Innovation in Product Design is written for academic researchers, graduate students and professionals in product development disciplines who are interested in understanding how novel methodologies and technologies can make the product development process more efficient.
Human lives are getting increasingly entangled with technology, especially comp- ing and electronics. At each step we take, especially in a developing world, we are dependent on various gadgets such as cell phones, handheld PDAs, netbooks, me- cal prosthetic devices, and medical measurement devices (e.g., blood pressure m- itors, glucometers). Two important design constraints for such consumer electronics are their form factor and battery life. This translates to the requirements of reduction in the die area and reduced power consumption for the semiconductor chips that go inside these gadgets. Performance is also important, as increasingly sophisticated applications run on these devices, and many of them require fast response time. The form factor of such electronics goods depends not only on the overall area of the chips inside them but also on the packaging, which depends on thermal ch- acteristics. Thermal characteristics in turn depend on peak power signature of the chips. As a result, while the overall energy usage reduction increases battery life, peak power reduction in?uences the form factor. One more important aspect of these electronic equipments is that every 6 months or so, a newer feature needs to be added to keep ahead of the market competition, and hence new designs have to be completed with these new features, better form factor, battery life, and performance every few months. This extreme pressure on the time to market is another force that drives the innovations in design automation of semiconductor chips.
Design exibility and power consumption in addition to the cost, have always been the most important issues in design of integrated circuits (ICs), and are the main concerns of this research, as well. Energy Consumptions: Power dissipation (P ) and energy consumption are - diss pecially importantwhen there is a limited amountof power budgetor limited source of energy. Very common examples are portable systems where the battery life time depends on system power consumption. Many different techniques have been - veloped to reduce or manage the circuit power consumption in this type of systems. Ultra-low power (ULP) applications are another examples where power dissipation is the primary design issue. In such applications, the power budget is so restricted that very special circuit and system level design techniquesare needed to satisfy the requirements. Circuits employed in applications such as wireless sensor networks (WSN), wearable battery powered systems [1], and implantable circuits for biol- ical applications need to consume very low amount of power such that the entire system can survive for a very long time without the need for changingor recharging battery[2-4]. Using newpowersupplytechniquessuchas energyharvesting[5]and printable batteries [6], is another reason for reducing power dissipation. Devel- ing special design techniques for implementing low power circuits [7-9], as well as dynamic power management (DPM) schemes [10] are the two main approaches to control the system power consumption. Design Flexibility: Design exibility is the other important issue in modern in- grated systems. |
You may like...
Thin-Walled Structures - Research and…
J.Y.Richard Liew, V. Thevendran, …
Hardcover
R6,092
Discovery Miles 60 920
Fourier Series in Control Theory
Vilmos Komornik, Paola Loreti
Hardcover
R1,421
Discovery Miles 14 210
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Optical Spectroscopy of Lanthanides…
Brian G. Wybourne, Lidia Smentek
Paperback
R1,935
Discovery Miles 19 350
Applying Data Science and Learning…
Goran Trajkovski, Marylee Demeter, …
Hardcover
R5,333
Discovery Miles 53 330
|