![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment > Water purification & desalinization
Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater.
The Future of Effluent Treatment Plants: Biological Treatment Systems is an advanced and updated version of existing biological technologies that includes their limitations, challenges, and potential application to remove chemical oxygen demand (COD), refractory chemical oxygen demand, biochemical oxygen demand (BOD), color removal and environmental pollutants through advancements in microbial bioremediation. The book introduces new trends and advances in environmental bioremediation with thorough discussions of recent developments. In addition, it illustrates that the application of these new emerging innovative technologies can lead to energy savings and resource recovery. The importance of respiration, nitrogen mineralization, nitrification, denitrification and biological phosphorus removal processes in the development of a fruitful and applicable solution for the removal of toxic pollutants from wastewater treatment plants is highlighted. Equally important is the knowledge and theoretical modeling of water movement through wastewater ecosystems. Finally, emphasis is given to the function of constructed wetlands and activated sludge processes.
Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat. As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered.
New Trends in Removal of Heavy Metals from Industrial Wastewater covers the applicable technologies relating to the removal of heavy metals from wastewater and new and emerging trends in the field, both at the laboratory and industrial scale. Sections explore new environmentally friendly technologies, the principles of sustainable development, the main factors contributing to heavy metal removal from wastewater, methods and procedures, materials (especially low-cost materials originated from industrial and agricultural waste), management of wastewater containing heavy metals and wastewater valorization, recycling, environmental impact, and wastewater policies for post heavy metal removal. This book is an advanced and updated vision of existing heavy metal removal technologies with their limitations and challenges and their potential application to remove heavy metals/environmental pollutants through advancements in bioremediation. Finally, sections also cover new trends and advances in environmental bioremediation with recent developments in this field by an application of chemical/biochemical and environmental biotechnology.
Handbook of Advanced Approaches towards Pollution Prevention and Control, Volume One: Conventional and Innovative Technology, and Assessment Techniques for Pollution Prevention and Control condenses all relevant information on pollution prevention and control in a single source. This handbook (Volume One of Two) covers the principles of pollution prevention and control technologies, recent advances in pollution prevention, control technologies and their sustainability, modernization in pollution prevention, and control technologies for future and next generation pollution prevention. This book is an indispensable resource for researchers and academic staff in chemical and process engineering, safety engineering, environmental engineering, biotechnology and materials engineering.
Handbook of Advanced Approaches towards Pollution Prevention and Control, Volume Two: Legislative Measures and Sustainability for Pollution Prevention and Control condenses all relevant information on pollution prevention and control in a single source. This handbook (Volume Two of Two) covers the principals of pollution prevention and control technologies, recent advances in pollution prevention, control technologies and their sustainability, modernization in pollution prevention and control technologies for future and next generation of pollution prevention and control technologies. The book is an indispensable resource for researchers and academic staff in chemical and process engineering, safety engineering, environmental engineering, biotechnology, and materials engineering.
Management of Concentrate from Desalination Plants provides an overview of the alternatives for managing concentrate generated by brackish water and seawater desalination plants, as well as site-specific factors involved in the selection of the most viable alternative for a given project, and the environmental permitting requirements and studies associated with their implementation. The book focuses on widely used alternatives for disposal of concentrate, including discharge to surface water bodies; disposal to the wastewater collection system; deep well injection; land application; evaporation; and zero liquid discharge. Direct discharge through new outfall; discharge through existing wastewater treatment plant outfall; and co-disposal with the cooling water of existing coastal power plant are thoroughly described, and design guidance for the use of these concentrate disposal alternatives is presented with engineers and practitioners in the field of desalination in mind. Key advantages, disadvantages, environmental impact issues, and possible solutions are presented for each discharge alternative. Easy-to-use graphs depicting construction costs as a function of concentrate flow rate are provided for all key concentrate management alternatives.
The deterioration of water quality and unavailability of drinkable water are pressing challenges worldwide. The removal of toxic organic and inorganic pollutants from water is vital for a clean environment, as a response to water scarcity. Adsorption-based water technologies are among the most widely used because of their high efficiency and low cost, without relying on a complex infrastructure. In recent years, carbon nanomaterials (CNMs), such as graphene and derivatives, carbon nanotubes, carbon nanofibers, nanoporous carbon, fullerenes, graphitic carbon nitride, and nanodiamonds have been extensively exploited as adsorbents due to their extraordinary surface properties, ease of modification, large surface area, controlled structural varieties, high chemical stability, porosity, low density, ease of regeneration, and reusability. This book provides a thorough overview of the state of the art in carbon nanomaterials as they are used for adsorption applications in water purifications, as well as addressing their toxicological challenges. This volume primarily explores the fundamentals of adsorption, its mechanical aspects, synthesis and properties of CNMs, and adsorption performances of CNMs and their nanocomposites with organic and inorganic materials. Structural engineering and activation processes produce materials with enhanced adsorptive properties and separation efficiencies. Furthermore, the formation of CNMs with 2D and 3D macro-and microstructures and high porosities is a potential approach to improve adsorption performances and extend CNM use at the industrial level. The book also addresses important issues regarding these adsorbents that potentially affect future research and industrial applications of carbon-based nanoadsorbents in water security.
Water is the most valuable resource for all human development. With increasing global population the demand for water increases whereas the sources of clean water are decreasing. recycling and reuse of wastewater has become an imperative which demands the development of new, efficient and environmentally friendly treatment methods. Current Trends and Future Developments in (Bio-) Membranes: Recent Achievements in Wastewater and Water Treatments provides a comprehensive coverage of the existing wastewater treatment including, but not exclusively, membrane-based methods. The book presents most common used methods compares and evaluates them depending on their particular application. It illustrates many aspects of the various treatment systems used in water and wastewater purification and lists the advantages of membrane-based methods to non-membrane based technologies. This book focuses on introducing, applications, advantages/disadvantages, evaluating of membrane-based technologies and comparing it with other non-membrane based systems. It also analyses the various limitations of each method. Hence, the book is a key reference text for R&D managers in industry interested in the development of water/waste treatment technologies as well as academic researchers and postgraduate students working in the wider area of the strategic treatment, separation and purification processes.
Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries provides a variety of approaches to water purification that can help assist readers with their research and applications. Water contamination problems occur frequently worldwide, hence the most updated knowledge on water purification systems can be helpful in employing the right type of filter or other mechanism of decontamination. The problems with arsenic contamination of water in Bangladesh and the lead problem in Flint, Michigan remind us of the need to monitor water pollution rigorously, from both point and non-point sources.
Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation focuses on the various types of membrane- based salinity gradient processes that can be applied for desalination. Topics cover salinity gradient processes for desalination, such as Forward Osmosis (FO) and Pressure Retarded Osmosis (PRO), with chapters selected exclusively from a number of world-leading experts in various disciplines and from different continents. Sections include discussions on the theoretical and fundamental approaches to salinity gradient processes, various types of membrane materials and development, i.e., flat sheet and hollow fiber, various salinity water sources for an economically feasible process, and large-scale applications. Finally, the book focuses on economically feasible process optimization when both operational and capital costs are considered.
Solar Energy Desalination Technology explains how to obtain clean water from sea water using solar energy. Special methods and types used in solar desalination are introduced, providing new thoughts, concepts, and feasible solutions in the desalination field, along with the thermal and economic efficiency relating to current technology. Many places in the world are suffering from fresh water shortage. However, those places are often rich with solar resources, sea water, and/or brackish water resources that could dramatically benefit from solar energy as a viable solution for the production of fresh water.
Water Purification, a volume in the Nanotechnology in the Food Industry series, provides an in-depth review of the current technologies and emerging application of nanotechnology in drinking water purification, also presenting an overview of the common drinking water contaminants, such as heavy metals, organics, microorganisms, pharmaceuticals, and their occurrences in drinking water sources. As the global water crisis has motivated the industry to look for alternative water supplies, nanotechnology presents significant potential for utilizing previously unacceptable water sources. This books explores the practical methodologies for transforming water using nanotechnologies, and is a comprehensive reference to a wide audience of food science research professionals, professors, and students who are doing research in this field.
This book provides an up-to-date overview on the membrane technology for the drinking water treatment. The applications of PVDF-TiO2 nanowire hybrid ultrafiltration membrane, nanofiltration membrane, forward osmosis membrane, etc. in water treatment are discussed in detail. With abundant practical examples, the book is an essential reference for scientists, students and engineers in municipal engineering, environmental engineering, chemical engineering, environmental chemistry and material science.
Renewable Energy Powered Desalination Handbook: Applications and Thermodynamics offers a practical handbook on the use of renewable technologies to produce freshwater using sustainable methods. Sections cover the different renewable technologies currently used in the field, including solar, wind, geothermal and nuclear desalination. This coverage is followed by an equally important clear and rigorous discussion of energy recovery and the thermodynamics of desalination processes. While seawater desalination can provide a climate-independent source of drinking water, the process is energy-intensive and environmentally damaging. This book provides readers with the latest methods, processes, and technologies available for utilizing renewable energy applications as a valuable technology. Desalination based on the use of renewable energy sources can provide a sustainable way to produce fresh water. It is expected to become economically attractive as the costs of renewable technologies continue to decline and the prices of fossil fuels continue to increase.
Low Grade Heat Driven Multi-effect Distillation and Desalination describes the development of advanced multi-effect evaporation technologies that are driven by low grade sensible heat, including process waste heat in refineries, heat rejection from diesel generators or microturbines, and solar and geothermal energy. The technologies discussed can be applied to desalination in remote areas, purifying produced water in oil-and-gas industries, and to re-concentrate process liquor in refineries. This book is ideal for researchers, engineering scientists, graduate students, and industrial practitioners working in the desalination, petrochemical, and mineral refining sectors, helping them further understand the technologies and opportunities that relate to their respective industries. For researchers and graduate students, the core enabling ideas in the book will provide insights and open up new horizons in thermal engineering.
This book presents the latest results related to photocatalytic inactivation/killing of microorganisms, which is a promising alternative disinfection method that produces less or even no disinfection byproduct. The book is divided into 13 chapters, which introduce readers to the latest developments in the photocatalytic disinfection of microorganisms, examine essential photocatalytic (PC) and photoelectrocatalytic (PEC) disinfection studies, and forecast and make recommendations for the further development of PC and PEC disinfection. Bringing together contributions by various leading research groups worldwide, it offers a valuable resource for researchers and the industry alike, as well as the general public. Taicheng An, PhD, is Chair Professor and Director at the Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China. Huijun Zhao, PhD, is Chair Professor and Director at the Centre for Clean Environment and Energy & Griffith School of Environment, Griffith University, Australia. Po Keung Wong, PhD, is a Professor at the School of Life Sciences, the Chinese University of Hong Kong, Hong Kong SAR, China.
The information contained in this book will be of interest to all scientists involved in research concerning environmental contaminants. In addition, natural resource managers and regulatory agencies will greatly benefit from an awareness of this technology and its application to monitoring, exposure assessment and mitigation/remediation of environmental pollution. Also, as the passive, integrative sampling approach gains use in the environmental sciences (one of the authors, J.D. Petty, teaches a graduate level course at the University of Missouri which covers this technology as an integral party of the course), we envision that the book has potential for use as a text in graduate level courses.
A growing proportion of the world's population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.
On its next capital construction project, would your water or wastewater utility like to achieve Seven percent lower cost Thirteen percent faster construction Thirty-three percent faster overall schedule Fifty percent less schedule growth? These are some of the attractive benefits many water and wastewater utilities enjoy through the use of design-build construction over traditional design-bid-build construction. This book provides a basic template of how to plan, procure, and execute a design-build project. Written for water and wastewater utility management, engineers, planners, city officials, utility policymakers, regulators, and design-build contractors, the book covers all topics: History of design-build Types of projects well suited for design-build Steps to prepare for a design-build project Procuring a design-builder Executing design-build projects and performing acceptance tests Bonding, insurance, and dispute resolution Permitting and regulatory agency approvals State laws regarding design-build Design-Build for Water and Wastewater Projects was developed in collaboration with the Water Design-Build Council.
Green Membrane Technology Towards Environmental Sustainability covers experimental and theoretical aspects of greener membranes and processes. The book fills the gap in current literature and offers a platform that introduces and discusses new routes in fabricating green membranes and processes for developing green membranes. Although membranes and membrane processes have decades of history, rapid development in membranes manufacturing and emerging membrane driven markets is requiring new and more sustainable engagement of manufacturers, membrane operators and scientists. This book is written for chemical and polymer engineers, materials scientists, professors, graduate students, as well as general readers at universities, research institutions and R&D departments in industries who are engaged in sustainable engineering and practical strategies in circular economy.
Sustainable Technologies for Remediation of Emerging Pollutants from Aqueous Environment compiles and collates advanced technologies for the purification of water and wastewater. The book covers the biological purification of wastewater, the use of adsorbents for decontamination of water, the role of membrane technology and its composites for removing emerging pollutants, and applications of advanced oxidation processes (AOP) for removal of emerging pollutants. This resource provides a single source solution to academicians and young researchers by assembling the latest information on the application of the conventional and non-conventional in water and wastewater purification.
Resource Recovery in Industrial Waste Waters provides a holistic approach for discovering and harnessing valuable resources from industrial wastewaters, the cutting-edge technologies required, and a discussion on the new findings. In three volumes, the books stress the importance of contaminated waters' remediation, including surface waters, municipal or industrial wastewaters and treating these waters as a new source of nutrients, minerals and energy. It introduces polluted waters as new and sustainable sources, rather than seeing wastewaters as only a source of hazardous organic and inorganic matters. Sections discuss wastewater treatment and recovery and contribute to generate a sustainable approach of wastewater by providing the main advantages and disadvantages of both wastewater/polluted water treatment and recovery.
Resource Recovery in Drinking Water Treatment concentrates on techniques and methods for water purification. The book develops a new approach—resource recovery—toward drinking water, including the role of methods (adsorption, membrane, ion – exchange, biosorption, coagulation, etc.) and nanocomposites (such as biochar, sludge-based composites, chitosan, polymer, magnetic particles, etc.) in water resource recovery. It provides an in-depth overview on emerging water treatment techniques and the resource recovery of materials during the treatment process. Finally, the book aims to introduce polluted waters as new and sustainable sources rather than seeing wastewaters only a source of hazardous organic and inorganic matters. This book is part of a three-volume set that stresses the importance of contaminated water remediation, including surface waters, municipal or industrial wastewaters, and waters as a new source of nutrients, minerals and energy.
Resource Recovery in Municipal Waste Waters provides various municipal wastewater remediation methods and techniques to recover materials from such wastewaters. Sections cover the basic principles of resource recovery, along with the recovery of methane, phosphorous, electricity and metals. The volume covers comprehensive cutting-edge techniques for resource recovery and municipal wastewater treatment and reports on new findings in these areas. It also introduces polluted waters as new and sustainable sources rather than seeing wastewaters as a source of hazardous organic and inorganic matters. The main advantages and disadvantages of both wastewater/polluted water treatment and recovery are also discussed. This three-volume set stresses the importance of contaminated waters remediation, including surface waters, municipal or industrial wastewaters, treating these waters as a new source of nutrients, minerals and energy. |
![]() ![]() You may like...
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
![]()
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|