Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment > Water purification & desalinization
A growing proportion of the world's population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.
Current Trends and Future Developments on (Bio-) Membranes: Recent Achievements for Ion-Exchange Membranes focuses on introducing and analyzing ion-exchange membranes performance and overviewing recent achievements in the structural development of ion-exchange membranes in various applications. Hence, this book is a key reference text for R&D managers in who are interested in the development of ion-exchange membrane technologies as well as academic researchers and postgraduate students working in the wider area of strategic treatments, separation and purification processes.
This thesis describes the occurrence of microbial and chemical contaminants in swimming pools and the investigation of an alternative disinfection technology, UVOX Redox (R) that could reduce reliance on chlorine and the formation of chlorinated disinfection byproducts (DBPs) in swimming pools. This technology was effective in inactivation of chlorine resistant microorganisms, represented by Bacillus subtilis spores, and in combination with chlorine generated lower concentrations of chlorinated DBPs compared to chlorination alone. It enhanced the removal of pharmaceuticals and personal care products (PPCPs), which were frequently present in indoor, outdoor and spa pools. Carbamazepine and 1H-benzotriazole were the most frequently detected PPCPs, while hydrochlorothiazide and 4-methylbenzylidene camphor were detected at the highest concentration. An investigation of seven different swimming pool facilities showed that clinically relevant fungi were omnipresent. Floors at the sites where the pool visitors converge, such as the exit leading to shower rooms, showed the highest fungal concentrations. The distribution of fungi inside the swimming pool facilities highlighted potential transmission pathways and a possible risk of fungal infections. Future swimming pool water guidance should include raising awareness among swimmers, pool operators and managers about hygienic behaviour and better hygiene measures, and application of alternative disinfection technologies such as UVOX. Key features: Identifies clinically relevant fungi in swimming pool environments Identifies potential transmission pathways of clinically relevant fungi in indoor swimming pools Highlights the occurrence of PPCPs in different type of pools and their relation with pool water treatment Assesses an alternative disinfection technology for swimming pool water treatment.
Desalination Technology: Health and Environmental Impacts covers the latest developments in desalination, examining the environmental and public health-related impacts of these technologies. Written by international experts, the text presents specifications for assessing water quality, technical issues associated with desalination technologies, and the chemical aspects of desalinated water and its microbiology. The book also discusses environmental protection issues that assist in the optimization of proposed and existing desalination facilities to ensure that nations and consumers enjoy the benefits of the expanded access to desalinated water. This includes coverage of health and environmental issues such as energy conservation and sustainability as well as protection of delicate coastal ecosystems and groundwater from contamination by surface disposal of concentrates-challenges that must be addressed during the design, construction, and operation of a desalination facility. Development of new and improved desalinization technologies, including major cost reduction trends, have significantly broadened the opportunities to access large quantities of safe water in many parts of the world. And while there are many books available on desalination, this book's unusual approach blends technical coverage of the latest technologies with coverage of the environmental and public health-related impacts of these technologies, setting it apart from other resources. It provides technical guidance based on the practical expertise of a balanced group of international scientists and engineers.
SOIL BIOREMEDIATION A practical guide to the environmentally sustainable bioremediation of soil Soil Bioremediation: An Approach Towards Sustainable Technology provides the first comprehensive discussion of sustainable and effective techniques for soil bioremediation involving microbes. Presenting established and updated research on emerging trends in bioremediation, this book provides contributions from both experimental and numerical researchers who provide reports on significant field trials. Soil Bioremediation instructs the reader on several different environmentally friendly bioremediation techniques, including: Bio-sorption Bio-augmentation Bio-stimulation Emphasizing molecular approaches and biosynthetic pathways of microbes, this one-of-a-kind reference focuses heavily on the role of microbes in the degradation and removal of xenobiotic substances from the environment and presents a unique management and conservation perspective in the field of environmental microbiology. Soil Bioremediation is perfect for undergraduate students in the fields of environmental science, microbiology, limnology, freshwater ecology and microbial biotechnology. It is also invaluable for researchers and scientists working in the areas of environmental science, environmental microbiology, and waste management.
Water is our natural heritage, our miracle of life. However, our increasingly technological society has become indifferent to water. Far from being pure, modern drinking water around the world contains many undesirable chemical and bacterial contaminants. The existing techniques employed for the disinfection of water are either energy-intensive or have by-products harmful to human health. Drinking Water Disinfection Techniques reviews these processes and explores novel technologies for water disinfection synergistic with existing techniques. The book covers a wide audience and gives a comprehensive review of various physical, chemical, and hybrid techniques commonly used for the disinfection of water as well as newer emerging technologies in terms of their mode of action, scale of operation, efficacy, merits, and demerits. It broadly addresses the issues related to water disinfection in three sections:
Drinking Water Disinfection Techniques effectively combines the chemical, physical, biological, and engineering principles of water disinfection in one text. Discussing both conventional and novel techniques used for disinfection and the economics involved, the book gives a comprehensive review of various physical, chemical, and hybrid techniques used for disinfection to create potable water.
Worldwide, many regions have a great potential to cover part of their pressing water needs by renewable energy powered water treatment processes using either thermal or membrane based technologies. Not only arid and semiarid regions are increasingly suffering from water shortage but also many other regions face a limitation of freshwater resources either by increasing contamination of surface water bodies or groundwater resources unsuitable for drinking and irrigation purposes either due to their high grade of mineralization or their contents of toxic components. In many areas without centralized water supply, treatment techniques using locally available renewable energy resources such as wind, solar and geothermal can provide an economical, social and environmentally sustainable option for clean water production from seawater and from highly mineralized or otherwise unsuitable ground- and surface water. This book provides an overview on possible cost-efficient techniques and application opportunities for different scales and shows why the implementation of these technologies faces numerous technological, economic and policy barriers and provides suggestions how they can be overcome. It serves as a synoptic compendium of the fundamentals of freshwater production using renewable energies, applicable to all types of water, ranging from brackish to marine water and also including industrial and communal residual water. The book is aimed at professionals, academics and decision makers worldwide, working in the areas of water resources, water supply,land planning, energy planning, greenhouse gases emission mitigation and rural development.
A practical guide to wastewater bacteria and the roles they perform
in wastewater treatment
Membrane-Distillation in Desalination is an attempt to provide the latest knowledge, state of the art and demystify outstanding issues that delay the deployment of the technology on a large scale. It includes new updates and comprehensive coverage of the fundamentals of membrane distillation technology and explains the energy advantage of membrane distillation for desalination when compared to traditional techniques such as thermal or reverse osmosis. The book includes the latest pilot test results from around the world on membrane distillation desalination.
This is the only book that takes a zero-waste approach to propose 100% sustainable water purification techniques. Water is synonymous with life. This has been the case since pre-historic time to the modern era. For the first time, humanity faces a crisis that eclipses the energy crisis, which has often incapacitated the global economy. The Climate-Water-Food nexus epitomizes our current civilization that depends on energy as the driver. Many recognize this crisis as a product of fossil fuel production, which allegedly triggered climate change and the "climate change debate." Others predict the onslaught of "water wars" in the coming decades. As the world gears up to another lineup of empty promises and ensuing chaos, this book turns this crisis on its head and shows the source of the water crisis. The science behind the water cycle is described in clear language, without resorting to dogmatic assertions and spurious assumptions. The role of the sun, natural carbon dioxide (CO2) and water and the need to maintain natural processes free from artificial chemicals are discussed in detail. The book makes it clear how most of the currently used purification techniques violates the natural cycle involving sunlight, CO2 and water, and thus become unsustainable. A series of water purification techniques, as usable for drinking, agricultural and industrial applications are presented. The advantages of these techniques and their long-term sustainability are highlighted, with discussion on improvements in the future. Whether for the engineer or scientist working in the field or laboratory or the student, this is a must-have for any engineer, scientist, student, or policymaker.
Renewable Energy Powered Desalination Handbook: Applications and Thermodynamics offers a practical handbook on the use of renewable technologies to produce freshwater using sustainable methods. Sections cover the different renewable technologies currently used in the field, including solar, wind, geothermal and nuclear desalination. This coverage is followed by an equally important clear and rigorous discussion of energy recovery and the thermodynamics of desalination processes. While seawater desalination can provide a climate-independent source of drinking water, the process is energy-intensive and environmentally damaging. This book provides readers with the latest methods, processes, and technologies available for utilizing renewable energy applications as a valuable technology. Desalination based on the use of renewable energy sources can provide a sustainable way to produce fresh water. It is expected to become economically attractive as the costs of renewable technologies continue to decline and the prices of fossil fuels continue to increase.
Low Grade Heat Driven Multi-effect Distillation and Desalination describes the development of advanced multi-effect evaporation technologies that are driven by low grade sensible heat, including process waste heat in refineries, heat rejection from diesel generators or microturbines, and solar and geothermal energy. The technologies discussed can be applied to desalination in remote areas, purifying produced water in oil-and-gas industries, and to re-concentrate process liquor in refineries. This book is ideal for researchers, engineering scientists, graduate students, and industrial practitioners working in the desalination, petrochemical, and mineral refining sectors, helping them further understand the technologies and opportunities that relate to their respective industries. For researchers and graduate students, the core enabling ideas in the book will provide insights and open up new horizons in thermal engineering.
Desalination is a dynamically growing field with more research, more engineering, more applications, more countries, more people, and with more training programs. This book provides high quality invited reviews on progress in various aspects of the desalination field. It features comprehensive coverage of desalination science, technology, economics, markets, energy considerations, environmental impact, and more. It is a key guide for professionals and researchers in water desalination and related areas including chemical, mechanical, and civil engineers, chemists, materials scientists, manufacturers of desalination membranes, water reuse engineers, and water authorities, as well as students in these fields.
Advanced Technologies in Wastewater Treatment: Oily Wastewaters focuses on characteristics and innovative treatment technologies of oily wastewater from various resources. Primary and physical treatment methods such as absorption, adsorption, followed by common techniques like coagulation and fluctuation are discussed in detail. Applications of other advanced methods for the treatment of oily wastewaters like utilization of membranes and stripping gases are covered as well. Finally, novel technologies applied in purification of oily wastewaters such as photocatalytic degradation and biological processes are reviewed and future outlooks and prospects are also illustrated.
Wastewaters generated from food production and agricultural activities are a source of environmental pollution due to their huge amount of nutrients, organic carbon, nitrogenous organics, inorganics, suspended and dissolved solids, and high biochemical and chemical oxygen demands. Advanced Technologies in Wastewater Treatment: Food Processing Industry provides an update on emerging technologies including oxidative and anaerobic processes (flotation, coagulation, sedimentation, filtration, adsorption, primary settling, secondary activated sludge, anaerobic digestion), ion exchange, membrane-based operations, adsorption/bio-sorption and advanced biological treatment to provide safe and clean water as well as to recover primary resources from food processing wastewaters. In addition, the integration of these technologies will be also considered in the logic of the process intensification strategy. Innovative and affordable solutions are proposed in the field of fruit and vegetable processing industry, fishing industry, meat and poultry industry, dairy production, oil and fat processing.
Whether you are a new employee or seasoned professional you need easy access to the latest test methods, updated quality control procedures, and calculations at your fingertips. You need to perform analyses quickly and easily and troubleshoot problems as they arise. You need a resource that is not only informative, but also practical and easy to use. Drinking Water Chemistry: A Laboratory Manual fills this need.
Industrial wastewater contains a large variety of compounds, such as hazardous organic pollutants, heavy metals, salts and nutrients, which makes its treatment challenging. On the other hand, the sewage treatment with existing technologies is not cost-effective due to high energy demand and contributes to greenhouse gas emission. Thus, the use of conventional water treatment methods is neither sustainable nor always effective. In this sense, BESs has emerged as a promising technology to treat complex industrial wastewater with a sustainable manner. Development in Wastewater Treatment Research and Processes: Bioelectrochemical Systems for Wastewater Management analyses and discusses the potential of microbial and electrochemical based hybrid processes for the treatment of complex industrial wastewater along with the recovery of valuable compounds and water reutilization. The most significant advantages of BES are high effectiveness, low toxicity, gentle operation conditions, environmentally friendly treatment without sludge accumulation and energy conservation. Bioelectrochemical systems (BES) are emerging as an exciting platform to convert chemical energy of organic wastes into electricity or hydrogen or value-added chemical commodities. In addition, recent and future trends in BES are highlighted.
This all-new revised edition of a modern classic is the most comprehensive and up-to-date coverage of the "green" process of desalination in industrial and municipal applications, covering all of the processes and equipment necessary to design, operate, and troubleshoot desalination systems. This is becoming increasingly more important for not only our world's industries, but our world's populations, as pure water becomes more and more scarce. "Blue is the new green." This is an all-new revised edition of a modern classic on one of the most important subjects in engineering: Water. Featuring a total revision of the initial volume, this is the most comprehensive and up-to-date coverage of the process of desalination in industrial and municipal applications, a technology that is becoming increasingly more important as more and more companies choose to "go green." This book covers all of the processes and equipment necessary to design, operate, and troubleshoot desalination systems, from the fundamental principles of desalination technology and membranes to the much more advanced engineering principles necessary for designing a desalination system. Earlier chapters cover the basic principles, the economics of desalination, basic terms and definitions, and essential equipment. The book then goes into the thermal processes involved in desalination, such as various methods of evaporation, distillation, recompression, and multistage flash. Following that is an exhaustive discussion of the membrane processes involved in desalination, such as reverse osmosis, forward osmosis, and electrodialysis. Finally, the book concludes with a chapter on the future of these technologies and their place in industry and how they can be of use to society. This book is a must-have for anyone working in water, for engineers, technicians, scientists working in research and development, and operators. It is also useful as a textbook for graduate classes studying industrial water applications.
This edited book explores the most promising and reliable technological developments expected to impact on the next generation of desalination systems. The book includes research studies which takes the reader on a fascinating walk through the multidisciplinary world of membrane science applied to water treatment. Concerning the ultimate technological advancement, the book seeks to investigate how to bridge the gap between the laboratory scale and the applicability to industry.
Treatment and Reuse of Sewage Sludge: An Innovative Approach for Wastewater Treatment: Developments in Waste Water Treatment Research and Processes series, focuses on the exploitation of various treatment technologies and their use to treat sewage sludge to detoxify/stabilize toxic and hazardous contaminants and restore contaminated sites, which lacks in a more comprehensive manner in currently existing titles on similar topics. The book includes current beneficial sludge utilization practices such as land application, energy recovery, use as an alternative fuel source, use as a construction material and resource recovery from sewage sludge using emerging technologies. In addition, the book includes numerous current and advanced sewage sludge treatment and reuse technologies and associated microbes to effectively treat and manage hazardous industrial wastes/or wastewater pollutants for environmental safety, sustainability and public health protection. The book is a reference for all researchers working in the field of environmental engineering, bioengineering, waste management, and related fields.
The practical guide on what to do right when biological influences cause a sequencing batch reactor to go wrong This richly illustrated, straightforward guide carries forth the legacy established by previous editions in the "Wiley Wastewater Microbiology" series by focusing attention on the mixed gathering of organisms cohabitating within a sequencing batching reactor (SBR), and the key roles their biology plays in this wastewater processing tank's function. With a clear, user-friendly presentation of complex subject matter, "Troubleshooting the Sequence Batch Reactor" first teaches plant operators how to differentiate the positive and expected organismal dynamics present in optimal SBR performance from the negative and damaging ones that create unhealthy sludge, and a stoppage in SBR operations. Next, Troubleshooting the Sequence Batch Reactor delivers all the tools necessary to get an SBR back on track and running safely. In this book you'll get: Short-course situations tested by the author for the past fifteen years Accessible material aimed at operators instead of design and consulting engineers Essential information for understanding biological conditions such as aerobic, anoxic, and anaerobic/fermentative at the treatment process Examination of the properties of protozoa (single-celled) and metazoa (multi-celled) organisms, and their significance in wastewater treatment Devoid of overwhelming scientific jargon, chemical equations, and kinetics, this book simplifies details to provide quick instruction for plant operators on how to make more informed day-to-day process control decisions, how to troubleshoot confidently when SBR conditions become compromised, and how to act decisively when the problem is ultimately identified.
Development in Wastewater Treatment Research and Processes: Microbial Ecology, Diversity and Functions of Ammonia Oxidizing Bacteria covers up-to-date research on ammonia oxidizing bacteria and their application for the removal of ammonia nitrogen from wastewater treatment plants (WWTPs), discussing remaining gaps in their biology and functions. In this sense, this book features the application of the newly developed omics tools in order to develop less energy intensive and cost-effective biological processes for nitrogen removal from WWTPs. This makes this book an essential and unique book for advanced students, research scientists, environmental agencies and industries involved in wastewater treatment.
Biodegradation and Detoxification of Micropollutants in Industrial Wastewater summarizes the occurrence and source of micropollutants through various industrial wastewaters. It covers the type of micropollutants, their effects, and emerging detection and treatment methods. The book has 11 chapters, and throughout each chapter, it presents the fate and effects of micropollutants, quantitative and qualitative analysis of micropollutants in industrial wastewaters, and treatment of micropollutants through conventional and advanced wastewater treatment technologies.
A practical, hands-on guide to using the microscope to analyze
activated sludge in wastewater treatment
Development in Wastewater Treatment Research and Processes: Microbial Degradation of Xenobiotics through Bacterial and Fungal Approach covers the active and applicable role that bacteria and fungi play in the degradation of xenobiotic compounds from the environment. The book gives up-to-date information on recent advancements in the field of environmental xenobiotics and how they disturb a plant's metabolism. The book also gives information on aerobic and anaerobic degradation of xenobiotic compounds through bacteria or fungi and/or a combined approach. Finally, the book covers the characteristics of environmental microbiology, biochemical engineering, agricultural microbiology, environmental engineering, and soil bioremediation. |
You may like...
Design-Build for Water and Wastewater…
Holly L. Shorney-Darby
Hardcover
R4,489
Discovery Miles 44 890
Fundamentals of Salt Water Desalination
H.T. El-Dessouky, H.M. Ettouney
Hardcover
R7,981
Discovery Miles 79 810
Emerging Technologies for Sustainable…
Gnaneswar Gnaneswar Gude
Paperback
Emerging Techniques for Treatment of…
Akil Ahmad, Rajeev Kumar, …
Paperback
R4,391
Discovery Miles 43 910
Economics and Episodic Disease - The…
Winston Harrington, Alan J. Krupnick, …
Hardcover
R2,805
Discovery Miles 28 050
Efficient Desalination by Reverse…
Stewart Burn, Stephen Gray
Paperback
Monitors of Organic Chemicals in the…
James N. Huckins, Jim D. Petty, …
Hardcover
R2,801
Discovery Miles 28 010
Drinking Water Treatment - New Membrane…
Bingzhi Dong, Tian Li, …
Hardcover
R4,748
Discovery Miles 47 480
Bio-Electrochemical Systems - Waste…
Kuppam Chandrasekhar, Satya Eswari Jujjavarapu
Hardcover
|