![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering > Water supply & treatment > Water purification & desalinization
Pretreatment for Reverse Osmosis Desalination is a comprehensive reference on all existing and emerging seawater pretreatment technologies used for desalination. The book focuses on reverse osmosis membrane desalination, which at present is the most widely applied technology for the production of fresh drinking water from highly saline water sources (brackish water and seawater). Each chapter contains examples illustrating various pretreatment technologies and their practical implementation.
Low Cost Wastewater Bioremediation Technology: Innovative Treatment of Sulphate and Metal Rich Wastewater provides users with an authoritative guide on the technologies, processes and considerations needed for the treatment of Sulphate and Metal rich wastewaters. In this book, the authors not only explain the associated technologies, but also provide suitable alternatives to commercial treatment in terms of performance and cost effectiveness. As enormous quantities of sulphates and metal-rich contaminates are released into the environment each year, the technologies noted in the book provide the most eco-friendly, low cost and efficient alternatives available.
Seawater desalination is a coastal-based industry. The growing number of desalination plants worldwide and the increasing size of single facilities emphasises the need for greener desalination technologies and more sustainable desalination projects. Two complementing approaches are the development and implementation of best available technology (BAT) standards and best practice guidelines for environmental impact assessment (EIA) studies. While BAT is a technology-based approach, which favours state of the art technologies that reduce resource consumption and waste emissions, EIA aims at minimizing impacts at a site- and project-specific level through environmental monitoring, evaluation of impacts, and mitigation where necessary. This book contains a comprehensive evaluation and synthesis of the potential environmental impacts of desalination plants, with emphasis on the marine environment and aspects of energy use, followed by the development of strategies for impact mitigating. A concept for BAT for seawater desalination technologies is proposed, in combination with a methodological approach for the EIA of desalination projects. The scope of the EIA studies are outlined, including environmental monitoring, toxicity and hydrodynamic modelling studies, and the usefulness of multi-criteria analysis as a decision support tool for EIAs is explored and used to compare different intake and pre-treatment options for seawater reverse osmosis plants.
Originally published in 1991, this study uses the 1983 outbreak of Giardiasis in Luzerne County, Pennsylvania as a case study to explore the social costs of waterborne illnesses to a community. With over 6,000 people affected in that particular case, Economics and Episodic Disease emphasises the importance of Federal and State drinking water standards to protect the population from contamination whilst also commenting how regulations can be applied to other areas within public health as well as how to appraise the damage caused to surface water by the release of hazardous substances. This title will be of interest to students of Environmental Studies.
Originally published in 1991, this study uses the 1983 outbreak of Giardiasis in Luzerne County, Pennsylvania as a case study to explore the social costs of waterborne illnesses to a community. With over 6,000 people affected in that particular case, Economics and Episodic Disease emphasises the importance of Federal and State drinking water standards to protect the population from contamination whilst also commenting how regulations can be applied to other areas within public health as well as how to appraise the damage caused to surface water by the release of hazardous substances. This title will be of interest to students of Environmental Studies.
A pilot study conducted at the Gilze water treatment plant of Water Supply North West Brabant demonstrated that adsorptive filtration has several potential advantages over floc filtration, namely: longer filter runs due to slower head loss development; better filtrate quality; shorter ripening time; and less backwash water use. In existing groundwater treatment plants, the high iron (II) adsorption capacity of the iron oxide coated filter media makes it potentially possible to switch the governing mode of operation from floc filtration to adsorptive filtration. To achieve this two options can be considered: iron (II) adsorption under anoxic conditions followed by oxidation with oxygen-rich water; and adsorption of iron (II) in the presence of oxygen and simultaneous oxidation. The first option might be attractive specifically when two filtration steps are available.
Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling of downstream SWRO membranes. As more extra large SWRO plants (>500,000 m3/day) are expected to be constructed in the coming years, frequent chemical cleaning (>1/year) of SWRO installations will not be feasible, and more reliable pre-treatment system will be required. To maintain stable operation in SWRO plants during algal bloom periods, pre-treatment using ultrafiltration (UF) membranes has been proposed. This thesis addresses the effect of algal blooms on the operation of UF pre-treatment and SWRO. Experimental investigations demonstrated that marine algal blooms can impact the backwashability of UF and can accelerate biological fouling in RO. However, it is unlikely that algae themselves are the main causes of fouling but rather the transparent exopolymer particles (TEPs) that they produce. To better monitor TEPs, a new method capable of measuring TEP as small as 10 kDa was developed and showed that TEPs can be effectively removed by UF pre-treatment prior to SWRO. This work also demonstrated that although TEPs and other algal-derived material (AOM) are very sticky and can adhere to UF and RO membranes, adhesion can be much stronger on membranes already fouled with AOM. Moreover, a model was developed to predict the accumulation of algal cells in capillary UF membranes which further demonstrated that the role of algal cells in UF fouling is not as significant as that of AOM and TEPs. Overall, this study demonstrates that better analytical methods and tools are essential in elucidating the adverse impacts of algal blooms in seawater on the operation of membrane-based desalination plants (UF-RO). It also highlighted the importance of developing effective pre-treatment processes to remove AOM from the raw water and reduce the membrane fouling potential of the feed water for downstream SWRO membranes.
Worldwide, many regions have a great potential to cover part of their pressing water needs by renewable energy powered water treatment processes using either thermal or membrane based technologies. Not only arid and semiarid regions are increasingly suffering from water shortage but also many other regions face a limitation of freshwater resources either by increasing contamination of surface water bodies or groundwater resources unsuitable for drinking and irrigation purposes either due to their high grade of mineralization or their contents of toxic components. In many areas without centralized water supply, treatment techniques using locally available renewable energy resources such as wind, solar and geothermal can provide an economical, social and environmentally sustainable option for clean water production from seawater and from highly mineralized or otherwise unsuitable ground- and surface water. This book provides an overview on possible cost-efficient techniques and application opportunities for different scales and shows why the implementation of these technologies faces numerous technological, economic and policy barriers and provides suggestions how they can be overcome. It serves as a synoptic compendium of the fundamentals of freshwater production using renewable energies, applicable to all types of water, ranging from brackish to marine water and also including industrial and communal residual water. The book is aimed at professionals, academics and decision makers worldwide, working in the areas of water resources, water supply,land planning, energy planning, greenhouse gases emission mitigation and rural development.
Efficient particle separation in order to meet stringent regulatory standards represent one of the biggest challenges facing the process industry operators today. Emerging environmental problems such as climate change, population growth and natural resource depletion make it more compelling to undertake research into alternative phase separation techniques and optimization of existing ones. Meeting this challenge requires innovative, revolutionary and integrated approach in the design and optimization of various unit processes in fine particle separation. Flocculation is widely used as an effective phase separation technique across many process industries such as water and wastewater treatment and in minerals processing. In this work, a new pre-treatment technique was developed using a patented bench scale reactor unit as a technical proof of concept. Furthermore, the book provides a valuable insight into the hydrodynamics and fluid-particle interactions within the agglomeration units. The relatively high solids content of the stable pellets (approximately 30 %) and very low residual turbidity of the post-sedimentation supernatant (7 NTU) clearly demonstrate the potential of this technique. In addition to significantly improving the subsequent solid-liquid separation efficiency, this study also showed that the effluent can be recycled back into the sewer network or utilized for non-portable reuse. The findings obtained from this research will be extremely useful in the scaling up and optimization of the reactor system.
Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling of downstream SWRO membranes. As more extra large SWRO plants (>500,000 m3/day) are expected to be constructed in the coming years, frequent chemical cleaning (>1/year) of SWRO installations will not be feasible, and more reliable pre-treatment system will be required. To maintain stable operation in SWRO plants during algal bloom periods, pre-treatment using ultrafiltration (UF) membranes has been proposed. This thesis addresses the effect of algal blooms on the operation of UF pre-treatment and SWRO. Experimental investigations demonstrated that marine algal blooms can impact the backwashability of UF and can accelerate biological fouling in RO. However, it is unlikely that algae themselves are the main causes of fouling but rather the transparent exopolymer particles (TEPs) that they produce. To better monitor TEPs, a new method capable of measuring TEP as small as 10 kDa was developed and showed that TEPs can be effectively removed by UF pre-treatment prior to SWRO. This work also demonstrated that although TEPs and other algal-derived material (AOM) are very sticky and can adhere to UF and RO membranes, adhesion can be much stronger on membranes already fouled with AOM. Moreover, a model was developed to predict the accumulation of algal cells in capillary UF membranes which further demonstrated that the role of algal cells in UF fouling is not as significant as that of AOM and TEPs. Overall, this study demonstrates that better analytical methods and tools are essential in elucidating the adverse impacts of algal blooms in seawater on the operation of membrane-based desalination plants (UF-RO). It also highlighted the importance of developing effective pre-treatment processes to remove AOM from the raw water and reduce the membrane fouling potential of the feed water for downstream SWRO membranes.
Seawater desalination is a coastal-based industry. The growing number of desalination plants worldwide and the increasing size of single facilities emphasises the need for greener desalination technologies and more sustainable desalination projects. Two complementing approaches are the development and implementation of best available technology (BAT) standards and best practice guidelines for environmental impact assessment (EIA) studies. While BAT is a technology-based approach, which favours state of the art technologies that reduce resource consumption and waste emissions, EIA aims at minimizing impacts at a site- and project-specific level through environmental monitoring, evaluation of impacts, and mitigation where necessary. This book contains a comprehensive evaluation and synthesis of the potential environmental impacts of desalination plants, with emphasis on the marine environment and aspects of energy use, followed by the development of strategies for impact mitigating. A concept for BAT for seawater desalination technologies is proposed, in combination with a methodological approach for the EIA of desalination projects. The scope of the EIA studies are outlined, including environmental monitoring, toxicity and hydrodynamic modelling studies, and the usefulness of multi-criteria analysis as a decision support tool for EIAs is explored and used to compare different intake and pretreatment options for seawater reverse osmosis plants.
An excellent guide for anyone with a water system or water system problem, Water Quality and Systems provides an A-Z reference for improving water quality, meeting new regulations, and reducing costs. Every page contains a time- and money-saving tip. The book covers water purity, renovations, design, construction, equipment, systems, cost reduction, maintenance, and more. It also includes information on the EPA's WAVE Saver program for the hotel/motel industry as well as coverage of other regulations and codes. The book is designed to make the information easy to find for the busy manager or professional who doesn't have time to wade through pages and pages of textbook approaches.
Although more than 70% of the globe is covered with water, only a small portion is suitable for direct human use, making the scarcity of freshwater one of our planet's most serious challenges. In this context, desalination, defined as "the separation of salts from water", is one of the possible solutions for appeasing our ever-increasing thirst. By drawing upon the expertise of a remarkable team of international authors, this book aims to provide a simple, encompassing, and "multidisciplinary" introduction to desalination. The particular forte of this publication is its inclusive yet straightforward nature. In other words, the unique assortment of reader-friendly chapters is designed to cover the topic of desalination as a whole, and strike a delicate balance between the technical and non-technical. To this end, the book is divided into five general sections: * The first section presents an overview of water scarcity, followed by a review of integrated water management and the alternatives to desalination. The fundamentals of desalination are also provided, including simple water chemistry; * The second section covers conventional desalination technologies, including thermal and membrane processes. The topics of pre- and post- treatment are given due credit, as all desalination plants are more or less reliant on them; * The third section reviews the history of how desalination technologies originated, including a review of today's R&D activities and cutting edge research. The topic of membrane manufacturing is also covered; * Section four is concerned with energy and environmental issues, including the application of renewable and nuclear energy, energy minimization, brine management, and environmental impacts; * Finally, section five covers the social and commercial issues, ranging from rural desalination to politics. Desalination costs and economic feasibility are discussed, as well as issues in business development and future market prospects.
A growing proportion of the world's population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.
Worldwide, many regions have a great potential to cover part of their pressing water needs by renewable energy powered water treatment processes using either thermal or membrane based technologies. Not only arid and semiarid regions are increasingly suffering from water shortage but also many other regions face a limitation of freshwater resources either by increasing contamination of surface water bodies or groundwater resources unsuitable for drinking and irrigation purposes either due to their high grade of mineralization or their contents of toxic components. In many areas without centralized water supply, treatment techniques using locally available renewable energy resources such as wind, solar and geothermal can provide an economical, social and environmentally sustainable option for clean water production from seawater and from highly mineralized or otherwise unsuitable ground- and surface water. This book provides an overview on possible cost-efficient techniques and application opportunities for different scales and shows why the implementation of these technologies faces numerous technological, economic and policy barriers and provides suggestions how they can be overcome. It serves as a synoptic compendium of the fundamentals of freshwater production using renewable energies, applicable to all types of water, ranging from brackish to marine water and also including industrial and communal residual water. The book is aimed at professionals, academics and decision makers worldwide, working in the areas of water resources, water supply,land planning, energy planning, greenhouse gases emission mitigation and rural development.
Desalination Technology: Health and Environmental Impacts covers the latest developments in desalination, examining the environmental and public health-related impacts of these technologies. Written by international experts, the text presents specifications for assessing water quality, technical issues associated with desalination technologies, and the chemical aspects of desalinated water and its microbiology. The book also discusses environmental protection issues that assist in the optimization of proposed and existing desalination facilities to ensure that nations and consumers enjoy the benefits of the expanded access to desalinated water. This includes coverage of health and environmental issues such as energy conservation and sustainability as well as protection of delicate coastal ecosystems and groundwater from contamination by surface disposal of concentrates-challenges that must be addressed during the design, construction, and operation of a desalination facility. Development of new and improved desalinization technologies, including major cost reduction trends, have significantly broadened the opportunities to access large quantities of safe water in many parts of the world. And while there are many books available on desalination, this book's unusual approach blends technical coverage of the latest technologies with coverage of the environmental and public health-related impacts of these technologies, setting it apart from other resources. It provides technical guidance based on the practical expertise of a balanced group of international scientists and engineers.
Although valuable resources in river basins and other aqueous environments, sediments often receive much less attention from researchers, policymakers, and other professionals than other components of the ecosystem. Until now. Highlighting the important role that sediments play in the geoenvironment, Sediments Contamination and Sustainable Remediation focuses on sediment management for the purpose of environmental cleanup or management. It provides the in-depth understanding of the sediment-water environment needed to develop better management practices and meet sustainability requirements. The book discusses the contamination of sediments resulting from discharge of pollutants, excessive nutrients, and other hazardous substances from anthropogenic activities. It examines impacts observed as a result of these discharges, including the presence of hazardous materials and eutrophication, and elucidates the remediation techniques developed to restore the health of sediments and how to evaluate the remediation technologies using indicators. The text explores the problems inherent in dealing with contaminated sediments in rivers, lakes, and estuaries and includes numerous case studies that illustrate key concepts. The authors provide wide-ranging coverage of the topic and include methods for evaluating the effectiveness of different remediation technologies. They make the case for the development and application of innovative management practices that create long-term solutions to sediment contamination to reduce natural resource depletion, continued landfill contamination, and diminished biodiversity in the aquatic geoenvironment.
This thesis describes the occurrence of microbial and chemical contaminants in swimming pools and the investigation of an alternative disinfection technology, UVOX Redox (R) that could reduce reliance on chlorine and the formation of chlorinated disinfection byproducts (DBPs) in swimming pools. This technology was effective in inactivation of chlorine resistant microorganisms, represented by Bacillus subtilis spores, and in combination with chlorine generated lower concentrations of chlorinated DBPs compared to chlorination alone. It enhanced the removal of pharmaceuticals and personal care products (PPCPs), which were frequently present in indoor, outdoor and spa pools. Carbamazepine and 1H-benzotriazole were the most frequently detected PPCPs, while hydrochlorothiazide and 4-methylbenzylidene camphor were detected at the highest concentration. An investigation of seven different swimming pool facilities showed that clinically relevant fungi were omnipresent. Floors at the sites where the pool visitors converge, such as the exit leading to shower rooms, showed the highest fungal concentrations. The distribution of fungi inside the swimming pool facilities highlighted potential transmission pathways and a possible risk of fungal infections. Future swimming pool water guidance should include raising awareness among swimmers, pool operators and managers about hygienic behaviour and better hygiene measures, and application of alternative disinfection technologies such as UVOX. Key features: Identifies clinically relevant fungi in swimming pool environments Identifies potential transmission pathways of clinically relevant fungi in indoor swimming pools Highlights the occurrence of PPCPs in different type of pools and their relation with pool water treatment Assesses an alternative disinfection technology for swimming pool water treatment.
Water is our natural heritage, our miracle of life. However, our increasingly technological society has become indifferent to water. Far from being pure, modern drinking water around the world contains many undesirable chemical and bacterial contaminants. The existing techniques employed for the disinfection of water are either energy-intensive or have by-products harmful to human health. Drinking Water Disinfection Techniques reviews these processes and explores novel technologies for water disinfection synergistic with existing techniques. The book covers a wide audience and gives a comprehensive review of various physical, chemical, and hybrid techniques commonly used for the disinfection of water as well as newer emerging technologies in terms of their mode of action, scale of operation, efficacy, merits, and demerits. It broadly addresses the issues related to water disinfection in three sections:
Drinking Water Disinfection Techniques effectively combines the chemical, physical, biological, and engineering principles of water disinfection in one text. Discussing both conventional and novel techniques used for disinfection and the economics involved, the book gives a comprehensive review of various physical, chemical, and hybrid techniques used for disinfection to create potable water.
Membrane-Distillation in Desalination is an attempt to provide the latest knowledge, state of the art and demystify outstanding issues that delay the deployment of the technology on a large scale. It includes new updates and comprehensive coverage of the fundamentals of membrane distillation technology and explains the energy advantage of membrane distillation for desalination when compared to traditional techniques such as thermal or reverse osmosis. The book includes the latest pilot test results from around the world on membrane distillation desalination.
Whether you are a new employee or seasoned professional you need easy access to the latest test methods, updated quality control procedures, and calculations at your fingertips. You need to perform analyses quickly and easily and troubleshoot problems as they arise. You need a resource that is not only informative, but also practical and easy to use. Drinking Water Chemistry: A Laboratory Manual fills this need.
This edited book explores the most promising and reliable technological developments expected to impact on the next generation of desalination systems. The book includes research studies which takes the reader on a fascinating walk through the multidisciplinary world of membrane science applied to water treatment. Concerning the ultimate technological advancement, the book seeks to investigate how to bridge the gap between the laboratory scale and the applicability to industry.
The book assembles the latest research on new design techniques in water supplies using desalinated seawater. The authors examine the diverse issues related to the intakes and outfalls of these facilities. They clarify how and why these key components of the facilities impact the cost of operation and subsequently the cost of water supplied to the consumers. The book consists of contributed articles from a number of experts in the field who presented their findings at the "Desalination Intakes and Outfalls" workshop held at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia in October, 2013. The book integrates coverage relevant to a wide variety of researchers and professionals in the general fields of environmental engineering and sustainable development.
This book examines five methods used for concentrate management, namely; disposal to surface water, disposal to sewerage, deep well injection, land applications and evaporation ponds. In particular, the book focuses on the design, siting, cost, and environmental impacts of these methods. While these methods are widely practiced in a variety of settings already, there are many limitations that restrict the use of certain disposal options in particular locations.
A multi-disciplinary analysis of the evolution of water politics
and policy by an international team of distinguished experts. Water
management in the Middle Ages in Europe, its evolution in the USA,
the elaboration of the European Water Framework Directive, the
British experience of water management, the over-exploitation of
African aquifers, and the evolution of the water situation in
Southern Africa are all examined. |
You may like...
The Future of Effluent Treatment Plants…
Maulin P. Shah, Susana Rodriguez-Couto, …
Paperback
R4,625
Discovery Miles 46 250
Development in Wastewater Treatment…
Susana Rodriguez-Couto, Maulin P. Shah, …
Paperback
R4,540
Discovery Miles 45 400
Sustainable Technologies for Remediation…
Mohammad Hadi Dehghani, Rama Rao Karri, …
Paperback
R4,540
Discovery Miles 45 400
Fundamentals of Salt Water Desalination
H.T. El-Dessouky, H.M. Ettouney
Hardcover
R8,055
Discovery Miles 80 550
Green Membrane Technology Towards…
Ludovic Francis Dumee, Mohtada Sadrzadeh, …
Paperback
R4,579
Discovery Miles 45 790
Current Trends and Future Developments…
Angelo Basile, Kamran Ghasemzadeh
Paperback
R4,557
Discovery Miles 45 570
Development in Wastewater Treatment…
Maulin P. Shah, Susana Rodriguez-Couto, …
Paperback
R4,540
Discovery Miles 45 400
Resource Recovery in Municipal Waste…
Mika Sillanpaa, Ali Khadir, …
Paperback
R4,448
Discovery Miles 44 480
|