![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Engineering skills & trades > Welding
This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusinski and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.
This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis.
This books presents a current look at friction stir welding technology from application to characterization and from modeling to R&D. It is a compilation of the recent progress relating to friction stir technologies including derivative technologies, high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, and characterization. With contributions from leaders and experts in industry and academia, this will be a comprehensive source for the field of Friction Stir Welding and Processing.
This book addresses the evaluation and optimization of key elements in concentrating solar thermal (CST) technologies, such as solar receivers and working fluids, using computational fluid dynamics (CFD) modeling. It discusses both general and specific aspects, explaining the methodology used to analyze and evaluate the influence of different parameters on the facility performance. This information provides the basis for optimizing design and operating conditions in CST systems.
Welding and Joining of Advanced High Strength Steels (AHSS): The Automotive Industry discusses the ways advanced high strength steels (AHSS) are key to weight reduction in sectors such as automotive engineering. It includes a discussion on how welding can alter the microstructure in the heat affected zone, producing either excessive hardening or softening, and how these local changes create potential weaknesses that can lead to failure. This text reviews the range of welding and other joining technologies for AHSS and how they can be best used to maximize the potential of AHSS.
The intense temperature fields caused by heat sources in welding frequently lead to distortions and residual stresses in the finished product. Welding distortion is a particular problem in fabricating thin plate structures such as ships. Based on pioneering research by the authors, "Control of Welding Distortion in Thin-Plate Fabrication" reviews distortion test results from trials and shows how outcomes can be modeled computationally. The book provides readers with an understanding of distortion influences and the means to develop distortion-reducing strategies. The book is structured as an integrated treatment. It opens by reviewing the development of computational welding mechanics approaches to distortion. Following chapters describe the industrial context of stiffened plate fabrication and further chapters provide overviews of distortion mechanics and the modeling approach. A chapter on full-scale welding trials is followed by three chapters that develop modeling strategies through thermal process and thermo-mechanical simulations, based on finite-element analysis. Simplified models are a particular feature of these chapters. A final sequence of chapters explores the simulation of welding distortion in butt welding of thin plates and fillet welding of stiffened plate structures, and shows how these models can be used to optimize design and fabrication methods to control distortion. "Control of Welding Distortion in Thin-Plate Fabrication" is a
comprehensive resource for metal fabricators, engineering
companies, welders and welding companies, and practicing engineers
and academics with an interest in welding mechanics.
Maximizing reader insights into the latest research findings and applications of Electrically-Assisted Forming (EAF) - whereby metals are formed under an electric current field - this book explains how such a process produces immediate improved formability of metals beyond the extent of thermal softening, and allows metals to be formed to greater elongation with lower mechanical energy as well as allowing for lightweight brittle metals such as magnesium and titanium to be formed without external heating or annealing, enabling the more effective use of these lightweight metals in design. Including case studies that illustrate and support the theoretical content and real-world applications of the techniques discussed, this book also serves to enrich readers understanding of the underlying theories that influence electro-plastic behaviour. The authors have extensive experience in studying Electrically-Assisted Forming and have written extensively with publications including experimental works, technical briefs, conference proceedings, journal articles, and analytical models.
The first edition of Welding processes handbook established itself
as a standard introduction and guide to the main welding
technologies and their applications. This new edition has been
substantially revised and extended to reflect the latest
developments.
This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.
This book focuses on the current state of the art of the novel cold spray process. Cold spray is a solid state metal consolidation process, which allows engineers to tailor surface and shape properties by optimizing process parameters, powder characteristics and substrate conditions for a wide variety of applications that are difficult or impossible by other techniques. Readers will benefit from this book's coverage of the commercial evolution of cold spray since the 1980's and will gain a practical understanding of what the technology has to offer.
This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.
This book provides an overview of friction stir welding and friction stir spot welding with a focus on aluminium to aluminium and aluminium to copper. It also discusses experimental results for friction stir spot welding between aluminium and copper, offering a good foundation for researchers wishing to conduct more investigations on FSSW Al/Cu. Presenting full methodologies for manufacturing and case studies on FSSW Al/Cu, which can be duplicated and used for industrial purposes, it also provides a starting point for researchers and experts in the field to investigate the FSSW process in detail. A variant of the friction stir welding process (FSW), friction stir spot welding (FSSW) is a relatively new joining technique and has been used in a variety of sectors, such as the automotive and aerospace industries. The book describes the microstructural evolution, chemical and mechanical properties of FSW and FSSW, including a number of case studies.
Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, minimize downtime and reduce maintenance costs. The text introduces various signal-processing and pre-processing techniques, wavelets and principal component analysis, for example, together with their uses in condition monitoring and details the development of effective feature extraction techniques classified into frequency-, time-frequency- and time-domain analysis. Data generated by these techniques can then be used for condition classification employing tools such as: * fuzzy systems; rough and neuro-rough sets; neural and Bayesian networks;hidden Markov and Gaussian mixture models; and support vector machines.
This book provides essential information on metal forming,
utilizing a practical distinction between bulk and sheet metal
forming. In the field of bulk forming, it examines processes of
cold, warm and hot bulk forming, as well as rolling and a new
addition, the process of thixoforming. As for the field of sheet
metal working, on the one hand it deals with sheet metal forming
processes (deep drawing, flange forming, stretch drawing, metal
spinning and bending). In terms of special processes, the chapters
on internal high-pressure forming and high rate forming have been
revised and refined. On the other, the book elucidates and presents
the state of the art in sheet metal separation processes (shearing
and fineblanking). Furthermore, joining by forming has been added
to the new edition as a new chapter describing mechanical methods
for joining sheet metals.
Health and safety issues now impose upon almost every part of
business life. The system of enforcement is managed and implemented
in the UK by The Health and Safety Executive (HSE) - but at times
it can be difficult to know exactly which bits of this elaborate
spider s web should be applied in a given instance, and which are
most important. This Quick Guide puts the subject into context,
providing a rational overview and a valid starting point to
applying health and safety in the workplace, and offers a concise
and readily accessible interpretation of what health and safety
legislation means in practice.
Computational welding mechanics (CWM) provides an important
technique for modelling welding processes. Welding simulations are
a key tool in improving the design and control of welding processes
and the performance of welded components or structures. CWM can be
used to model phenomena such as heat generation, thermal stresses
and large plastic deformations of components or structures. It also
has a wider application in modelling thermomechanical and
microstructural phenomena in metals. This important book reviews
the principles, methods and applications of CWM.
Good product designs merge materials, technology and hardware into a unified user experience; one where the technology recedes into the background and people benefit from the capabilities and experiences available. By focusing on functional gain, critical awareness and emotive connection, even the most multifaceted and complex technology can be made to feel straightforward and become an integral part of daily life. Researchers, designers and developers must understand how to progress or appropriate the right technical and human knowledge to inform their innovations. The 1st International Smart Design conference provides a timely forum and brings together researchers and practitioners to discuss issues, identify challenges and future directions, and share their R&D findings and experiences in the areas of design, materials and technology. This proceedings of the 1st Smart Design conference held at Nottingham Trent University in November 2011 includes summaries of the talks given on topics ranging from intelligent textiles design to pharmaceutical packaging to the impact of social and emotional factors on design choices with the aim of informing and inspiring future application and development of smart design.
Local approaches to fatigue assessment are used to predict the
structural durability of welded joints, to optimise their design
and to evaluate unforeseen joint failures. This standard work
provides a systematic survey of the principles and practical
applications of the various methods. It covers the hot spot
structural stress approach to fatigue in general, the notch stress
and notch strain approach to crack initiation and the fracture
mechanics approach to crack propagation. Seam-welded and
spot-welded joints in structural steels and aluminium alloys are
also considered.
The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.
Manufacturing is the basic industrial activity generating real value. Cutting and abrasive technologies are the backbone of precision production in machine, automotive and aircraft building as well as of production of consumer goods. We present the knowledge of modern manufacturing in these technologies on the basis of scientific research. The theory of cutting and abrasive processes and the knowledge about their application in industrial practice are a prerequisite for the studies of manufacturing science and an important part of the curriculum of the master study in German mechanical engineering. The basis of this book is our lecture "Basics of cutting and abrasive processes" (4 semester hours/3 credit hours) at the Leibniz University Hannover, which we offer to the diploma and master students specializing in manufacturing science.
This is the third in a series of compendiums devoted to the subject of weld hot cracking. It contains 22 papers presented at the 3rd International Hot Cracking Workshop in Columbus, Ohio USA in March 2010. In the context of this workshop, the term "hot cracking" refers to elevated temperature cracking associated with either the weld metal or heat-affected zone. These hot cracking phenomena include weld solidification cracking, HAZ and weld metal liquation cracking, and ductility-dip cracking. The book is divided into three major sections based on material type; specifically aluminum alloys, steels, and nickel-base alloys. Each of these sections begins with a keynote paper from prominent researchers in the field: Dr. Sindo Kou from the University of Wisconsin, Dr. Thomas Bollinghaus from BAM and the University of Magdeburg, and Dr. John DuPont from Lehigh University. The papers contained within include the latest insight into the mechanisms associated with hot cracking in these materials and methods to prevent cracking through material selection, process modification, or other means. The three "Hot Cracking Phenomena in Welds" compendiums combined contain a total of 64 papers and represent the best collection of papers on the topic of hot cracking ever assembled.
This publication is a comprehensive book on the welding of aluminium, aimed primarily at practising engineers and students of welding technology. After describing the properties of wrought and cast aluminium alloys, their applications, alloy designations and composition, both in heat-treatable and non heat-treatable alloys, it goes on to explain the process variables in weld metal transfer mechanisms, the ways of overcoming problems in GAS tungsten ARC welding, and distortion – also providing numerical methods of analysis. A thorough and timely guide to all aspects of aluminium welding.
This book shows some contributions presented in the 2010 International Conference on Robotic Welding, Intelligence and Automation (RWIA 2010), Oct. 14-16, 2010, Shanghai, China. Welding handicraft is one of the most primordial and traditional techniques, mainly by manpower and human experiences. Weld quality and efficiency are, therefore, straightly limited by the welder s skill. In the modern manufacturing, automatic and robotic welding is becoming an inevitable trend. In recent years, the intelligentized techniques for robotic welding have a great development. The current teaching play-back welding robot is not with real-time functions for sensing and adaptive control of weld process. Generally, the key technologies on Intelligentized welding robot and robotic welding process include computer visual and other information sensing, monitoring and real-time feedback control of weld penetration and pool shape and welding quality. Seam tracking is another key technology for welding robot system. Some applications on intelligentized robotic welding technology is also described in this book, it shows a great potential and promising prospect of artificial intelligent technologies in the welding manufacturing."
The machining of complex sculptured surfaces is a global technological topic, in modern manufacturing with relevance in both industrialized and emerging in countries, particularly within the moulds and dies sector whose applications include highly technological industries such as the automotive and aircraft industry. Machining of Complex Sculptured Surfaces considers new approaches to the manufacture of moulds and dies within these industries. The traditional technology employed in the manufacture of moulds and dies combined conventional milling and electro-discharge machining (EDM) but this has been replaced with high-speed milling (HSM) which has been applied in roughing, semi-finishing and finishing of moulds and dies with great success. Machining of Complex Sculptured Surfaces provides recent information on machining of complex sculptured surfaces including modern CAM systems and process planning for three and five axis machining as well as explanations of the advantages of HSM over traditional methods ranging from work piece precision and roughness to manual polishing following machining operations. Whilst primarily intended for engineering students and post graduates (particularly in the fields of mechanical, manufacturing or materials), Machining of Complex Sculptured Surfaces provides clear instructions on modern manufacturing; serving as a practical resource for all academics, researchers, engineers and industry professionals with interest in the machining of complex sculptured surfaces. |
You may like...
The Welding Engineer's Guide to Fracture…
Philippa Moore, Geoff Booth
Hardcover
R3,760
Discovery Miles 37 600
|