0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Independent Component Analysis - Theory and Applications (Hardcover, 1998 ed.) Loot Price: R4,719
Discovery Miles 47 190
Independent Component Analysis - Theory and Applications (Hardcover, 1998 ed.): Te-Won Lee

Independent Component Analysis - Theory and Applications (Hardcover, 1998 ed.)

Te-Won Lee

 (sign in to rate)
Loot Price R4,719 Discovery Miles 47 190 | Repayment Terms: R442 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.

General

Imprint: Springer
Country of origin: Netherlands
Release date: October 1998
First published: October 1998
Authors: Te-Won Lee
Dimensions: 235 x 155 x 15mm (L x W x T)
Format: Hardcover
Pages: 210
Edition: 1998 ed.
ISBN-13: 978-0-7923-8261-4
Categories: Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 0-7923-8261-7
Barcode: 9780792382614

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, … Hardcover R2,985 Discovery Miles 29 850
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,926 Discovery Miles 29 260
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,578 Discovery Miles 75 780
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R891 R764 Discovery Miles 7 640
Get Started Programming with Python…
Manuel Mcfeely Hardcover R864 R743 Discovery Miles 7 430
Research Anthology on Machine Learning…
Information R Management Association Hardcover R18,375 Discovery Miles 183 750
Tree-Based Machine Learning Methods in…
Sharad Saxena Hardcover R2,211 Discovery Miles 22 110
Machine Learning In Bioinformatics Of…
Lukasz Kurgan Hardcover R3,765 Discovery Miles 37 650
Event Mining for Explanatory Modeling
Laleh Jalali, Ramesh Jain Hardcover R1,476 Discovery Miles 14 760
Data Mining - Concepts and Applictions
Ciza Thomas Hardcover R3,523 Discovery Miles 35 230
Machine Learning and Deep Learning in…
Mehul Mahrishi, Kamal Kant Hiran, … Hardcover R7,692 Discovery Miles 76 920

See more

Partners