0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Knowledge-based systems / expert systems

Buy Now

Managing Data From Knowledge Bases: Querying and Extraction (Hardcover, 1st ed. 2018) Loot Price: R2,789
Discovery Miles 27 890
Managing Data From Knowledge Bases: Querying and Extraction (Hardcover, 1st ed. 2018): Wei Emma Zhang, Quan Z. Sheng

Managing Data From Knowledge Bases: Querying and Extraction (Hardcover, 1st ed. 2018)

Wei Emma Zhang, Quan Z. Sheng

 (sign in to rate)
Loot Price R2,789 Discovery Miles 27 890 | Repayment Terms: R261 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual's historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries' structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system. To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance. For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.

General

Imprint: Springer International Publishing AG
Country of origin: Switzerland
Release date: August 2018
First published: 2018
Authors: Wei Emma Zhang • Quan Z. Sheng
Dimensions: 235 x 155mm (L x W)
Format: Hardcover
Pages: 139
Edition: 1st ed. 2018
ISBN-13: 978-3-319-94934-5
Categories: Books > Computing & IT > Internet > General
Books > Computing & IT > Applications of computing > Databases > General
Books > Computing & IT > Applications of computing > Artificial intelligence > Knowledge-based systems / expert systems
LSN: 3-319-94934-9
Barcode: 9783319949345

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Exploring Future Opportunities of…
Madhulika Bhatia, Tanupriya Choudhury, … Hardcover R7,039 Discovery Miles 70 390
Applied Affective Computing
Leimin Tian, Sharon Oviatt, … Hardcover R2,551 Discovery Miles 25 510
Probabilistic and Causal Inference - The…
Hector Geffner, Rina Dechter, … Hardcover R4,097 Discovery Miles 40 970
Pattern-Based Constraint Satisfaction…
Denis Berthier Hardcover R1,918 Discovery Miles 19 180
The Future You - How Artificial…
Harry Glorikian Hardcover R785 Discovery Miles 7 850
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R13,702 Discovery Miles 137 020
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R13,692 Discovery Miles 136 920
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R13,686 Discovery Miles 136 860
Foundation Models for Natural Language…
Gerhard PaaƟ, Sven Giesselbach Hardcover R1,325 R861 Discovery Miles 8 610
The Future of Technology in Education…
Harib Shaqsy Hardcover R906 R749 Discovery Miles 7 490
Deep Learning Applications for…
Monica R. Mundada, Seema S., … Hardcover R7,022 Discovery Miles 70 220
Socrates Digital (TM) for Learning and…
Mark Salisbury Hardcover R6,256 Discovery Miles 62 560

See more

Partners