Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The subject of the book is uid dynamics and heat transfer in micro-channels. This problem is important for understanding the complex phenomena associated with single- and two-phase ows in heated micro-channels. The challenge posed by high heat uxes in electronic chips makes thermal management a key factor in the development of these systems. Cooling of mic- electronic components by new cooling technologies, as well as improvement of the existing ones, is becoming a necessity as the power dissipation levels of integrated circuits increases and their sizes decrease. Miniature heat sinks with liquid ows in silicon wafers could signi cantly improve the performance and reliability of se- conductor devices. The improvements are made by increasing the effective thermal conductivity, by reducing the temperature gradient across the wafer, by reducing the maximum wafer temperature, and also by reducing the number and intensity of localized hot spots. A possible way to enhance heat transfer in systems with high power density is to change the phase in the micro-channels embedded in the device. This has motivated a number of theoretical and experimental investigations covering various aspects of heat transfer in micro-channel heat sinks with phase change. The ow and heat transfer in heated micro-channels are accompanied by a n- ber of thermohydrodynamic processes, such as liquid heating and vaporization, bo- ing, formation of two-phase mixtures with a very complicated inner structure, etc., which affect signi cantly the hydrodynamic and thermal characteristics of the co- ing systems.
Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors’ investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.
The subject of the book is uid dynamics and heat transfer in micro-channels. This problem is important for understanding the complex phenomena associated with single- and two-phase ows in heated micro-channels. The challenge posed by high heat uxes in electronic chips makes thermal management a key factor in the development of these systems. Cooling of mic- electronic components by new cooling technologies, as well as improvement of the existing ones, is becoming a necessity as the power dissipation levels of integrated circuits increases and their sizes decrease. Miniature heat sinks with liquid ows in silicon wafers could signi cantly improve the performance and reliability of se- conductor devices. The improvements are made by increasing the effective thermal conductivity, by reducing the temperature gradient across the wafer, by reducing the maximum wafer temperature, and also by reducing the number and intensity of localized hot spots. A possible way to enhance heat transfer in systems with high power density is to change the phase in the micro-channels embedded in the device. This has motivated a number of theoretical and experimental investigations covering various aspects of heat transfer in micro-channel heat sinks with phase change. The ow and heat transfer in heated micro-channels are accompanied by a n- ber of thermohydrodynamic processes, such as liquid heating and vaporization, bo- ing, formation of two-phase mixtures with a very complicated inner structure, etc., which affect signi cantly the hydrodynamic and thermal characteristics of the co- ing systems.
Combustion of Two-Phase Reactive Media addresses the complex phenomena involved in the burning of solid and liquid fuels. In fact, the multiplicity of phenomena characteristic of combustion of two-phase media determine the contents. The three parts deal with: the dynamics of a single particle; combustion wave propagation in two-phase reactive media; and thermal regimes of combustion reactors. The book generalizes the results of numerous investigations into the ignition and combustion of solid particles, droplets and bubbles, combustion wave propagation in heterogeneous reactive media, the stability of combustion of two-phase media, as well as the thermal regimes of high-temperature combustion reactors. It merges findings from the authors investigations into problems of two-phase flows and material from graduate-level courses they teach at Technion-Israel Institute of Technology.
|
You may like...
|