Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This thoroughly revised and updated three volume set continues to be the standard reference in the field, providing the latest in microelectronics design methods, modeling tools, simulation techniques, and manufacturing procedures. Unlike reference books that focus only on a few aspects of microelectronics packaging, these outstanding volumes discuss state-of-the-art packages that meet the power, cooling, protection, and interconnection requirements of increasingly dense and fast microcircuitry. Providing an excellent balance of theory and practical applications, this dynamic compilation features step-by-step examples and vital technical data, simplifying each phase of package design and production. In addition, the volumes contain over 2000 references, 900 figures, and 250 tables. Part I: Technology Drivers covers the driving force of microelectronics packaging - electrical, thermal, and reliability. It introduces the technology developer to aspects of manufacturing that must be considered during product development. Part II: Semiconductor Packaging discusses the interconnection of the IC chip to the first level of packaging and all first level packages. Electrical test, sealing, and encapsulation technologies are also covered in detail. Part III: Subsystem Packaging explores board level packaging as well as connectors, cables, and optical packaging.
Electronics has become the largest industry, surpassing agriculture, auto, and heavy metal industries. It has become the industry of choice for a country to prosper, already having given rise to the phenomenal prosperity of Japan, Korea, Singapore, Hong Kong, and Ireland among others. At the current growth rate, total worldwide semiconductor sales will reach $300B by the year 2000. The key electronic technologies responsible for the growth of the industry include semiconductors, the packaging of semiconductors for systems use in auto, telecom, computer, consumer, aerospace, and medical industries, displays, magnetic, and optical storage as well as software and system technologies. There has been a paradigm shift, however, in these technologies, from mainframe and supercomputer applications at any cost, to consumer applications at approximately one-tenth the cost and size. Personal computers are a good example, going from $500IMIP when products were first introduced in 1981, to a projected $IIMIP within 10 years. Thin, light portable, user friendly and very low-cost are, therefore, the attributes of tomorrow's computing and communications systems. Electronic packaging is defined as interconnection, powering, cool ing, and protecting semiconductor chips for reliable systems. It is a key enabling technology achieving the requirements for reducing the size and cost at the system and product level."
Electronics has become the largest industry, surpassing agriCUlture, auto. and heavy metal industries. It has become the industry of choice for a country to prosper, already having given rise to the phenomenal prosperity of Japan. Korea. Singapore. Hong Kong. and Ireland among others. At the current growth rate, total worldwide semiconductor sales will reach $300B by the year 2000. The key electronic technologies responsible for the growth of the industry include semiconductors. the packaging of semiconductors for systems use in auto, telecom, computer, consumer, aerospace, and medical industries. displays. magnetic, and optical storage as well as software and system technologies. There has been a paradigm shift, however, in these technologies. from mainframe and supercomputer applications at any cost. to consumer applications at approximately one-tenth the cost and size. Personal computers are a good example. going from $500IMIP when products were first introduced in 1981, to a projected $lIMIP within 10 years. Thin. light portable. user friendly and very low-cost are. therefore. the attributes of tomorrow's computing and communications systems. Electronic packaging is defined as interconnection. powering, cool ing, and protecting semiconductor chips for reliable systems. It is a key enabling technology achieving the requirements for reducing the size and cost at the system and product level."
Electronics has become the largest industry, surpassing agriCUlture, auto. and heavy metal industries. It has become the industry of choice for a country to prosper, already having given rise to the phenomenal prosperity of Japan. Korea. Singapore. Hong Kong. and Ireland among others. At the current growth rate, total worldwide semiconductor sales will reach $300B by the year 2000. The key electronic technologies responsible for the growth of the industry include semiconductors. the packaging of semiconductors for systems use in auto, telecom, computer, consumer, aerospace, and medical industries. displays. magnetic, and optical storage as well as software and system technologies. There has been a paradigm shift, however, in these technologies. from mainframe and supercomputer applications at any cost. to consumer applications at approximately one-tenth the cost and size. Personal computers are a good example. going from $500IMIP when products were first introduced in 1981, to a projected $lIMIP within 10 years. Thin. light portable. user friendly and very low-cost are. therefore. the attributes of tomorrow's computing and communications systems. Electronic packaging is defined as interconnection. powering, cool ing, and protecting semiconductor chips for reliable systems. It is a key enabling technology achieving the requirements for reducing the size and cost at the system and product level."
|
You may like...
|