![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This book presents the fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scaling of CMOS devices. As this is a rapidly evolving field of research we choose to focus on the materials that determine the performance of device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause severe integration difficulties, thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are well-known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides requires the use of state-of-the-art first-principles calculations. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discontinuity within the framework of the density functional theory. Experimental methods include oxide melt solution calorimetry and differential scanning calorimetry, Raman scattering and other optical characterization techniques, transmission electron microscopy, and X-ray photoelectron spectroscopy. Many of the problems encountered in the world of CMOS are also relevant for other semiconductors such as GaAs. A comprehensive review of recent developments in this field is thus also given. The book will be of interest to those actively engaged in gate dielectric research, and to graduate students in Materials Science, Materials Physics, Materials Chemistry, and Electrical Engineering.
According to Bernie Meyerson, IBM's chief technology of?cer, the traditional sc- ing of semiconductor manufacturing processes died somewhere between the 1- and 90-nanometer nodes. One of the prime reasons is the low dielectric constant of SiO - thechoice dielectricof all modern electronics. This book presents materials 2 fundamentals of the novel gate dielectrics that are being introduced into semic- ductor manufacturing to ensure the Moore's law scaling of CMOS devices. This is a very rapidly evolving?eld of research and we try to focus on the basicundersta- ing of structure, thermodynamics, and electronic properties of these materials that determine their performance in the device applications. Thevolume was conceivedin 2001 afteraSymposium on Alternative Gate - electrics we had at the American Physical Society March Meeting in Seattle, upon the suggestion of the Kluwer editor Sabine Freisem. After several discussions we decided that such a bookindeed would be useful as long as we could focus on the fundamental side of the problem and keep the level of the discussion accessible to graduate students andavariety of professionals from different ?elds. The problem of?nding a replacement for SiO asa gate dielectric bringstogether inaunique way 2 many fundamental disciplines. At the same time this problem is truly applied and practical. It looked unlikelythat the perfect new material would be foundfast; rather there would be a series of evolving candidate materialsand approaches.
With an approach that stresses the fundamental solid state behaviour of minerals, and with emphasis on both theory and experiment, this text surveys the physics and chemistry of earth materials. It starts with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how structural and thermodynamic information is obtained experimentally. The quantitative concepts of chemical bonding band theory, molecular orbit and ionic models are reviewed. The book goes on to discuss physical properties and to relate microscopic features to macroscopic thermodynamic behaviour. The book then discusses high pressure phase transitions, amorphous materials and solid state reactions, and concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book is designed to fill the gap between undergraduate texts and specialized review volumes, for students in earth sciences and materials science.
With an approach that stresses the fundamental solid state behaviour of minerals, and with emphasis on both theory and experiment, this text surveys the physics and chemistry of earth materials. It starts with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how structural and thermodynamic information is obtained experimentally. The quantitative concepts of chemical bonding band theory, molecular orbit and ionic models are reviewed. The book goes on to discuss physical properties and to relate microscopic features to macroscopic thermodynamic behaviour. The book then discusses high pressure phase transitions, amorphous materials and solid state reactions, and concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book is designed to fill the gap between undergraduate texts and specialized review volumes, for students in earth sciences and materials science.
|
![]() ![]() You may like...
Trust in Technology: A Socio-Technical…
Karen Clarke, Gillian Hardstone, …
Hardcover
R3,035
Discovery Miles 30 350
Friction Dynamics - Principles and…
Xiandong Liu, Gang Sheng Chen
Hardcover
R5,564
Discovery Miles 55 640
|