Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Genetic toxicology is recognized by geneticists and researchers
concerned with the genetic impact of man-made chemicals. In
"Genotoxicity Assessment: Methods and Protocols," expert
researchers in the field provide comprehensive genetictoxicology
protocols. These include in vitro and in vivo protocols on mutation
assays, cytogenetic techniques, and primary DNA damage, assays in
alternate to animal models, and updated ICH guidelines. Written in
the highly successful"Methods in Molecular Biology" series format,
the chapters include introductions to their respective topics,
lists of the necessary materials and reagents, step-by-step and
readily reproducible laboratory protocols, as well as key tips
ontroubleshooting and avoiding known pitfalls.
The vast number of chemicals existing or being added into the environment, have globally aroused great concern regarding their adverse effects in human population. Development and validation of sensitive and better test systems which can assess the adverse effects of chemicals at an early stage for intervention strategies to be implemented in time is currently in progress. This book documents the latest research and showcases the versatile, state-of-the-art technique - the Comet assay - in the field of modern toxicology. The assay is a simple, sensitive rapid and visual technique for the quantitative and qualitative assessment of DNA damage in single cells. The Comet Assay in Toxicology is the first book of its kind to be devoted exclusively to the Comet assay and its applications as an important tool in modern toxicology. This multi-author book will serve as both a reference and a guide to investigations in the biomedical, biochemical and pharmaceutical sciences. Written by investigators from the fields of genetic toxicology and human epidemiology, the authors have first-hand knowledge from their chosen sub-specialities and are active contributors to the peer-reviewed scientific literature. The book is divided into five major sections, reflecting the range of interest in the exploitation of this assay. The book's scope begins with an introduction section reviewing its genesis for those new to the technique and the current knowledge of the various fields in which it finds wide acceptance. This section sets the scene by explaining why the assay has become the most sensitive and sought after assay in modern toxicology. Next is a whole section that considers various procedures being followed to assess different types of DNA damage in various cell types and is contributed by experts in the respective fields. The third section puts together the specific applications of the assay in the diverse fields ranging from genetic toxicity testing to human monitoring, and environmental toxicology. The fourth section consists of the guidelines and recommendations for the conduct of the assay in in vitro and in vivo systems, based on the recommendations of the International Workgroups on genotoxicity test procedures. Finally, the book draws to a close with an assessment of the statistics used for the understanding of the data generated by the assay. This is a unique reference book as it provides the scientific community with the advances in Comet assay as well as its applications. It also incorporates a detailed section with instant and comprehensive information on the procedure of the assay and the latest protocols being used worldwide as well as statistical analyses to be followed. The book is aimed at students as well as scientists in the area of molecular epidemiology and genetic toxicology.
This book combines the contributions from the experts of material science, molecular biology, toxicology bio-organic and bio-inorganic chemistry, toxicologists and environmental and food technology etc. to fathom the full scope of current and future of developments in the area of Nanobiotechnology. Provides brief overview of nanobiotechnology for general readers who are not familiar with the research fields and presents a strong overview of most of the critical areas in field This book can also be used as text book for graduate students as an essential reference material, and as an reading material for general readers having a curiosity in Nanobiotechnology.
Genetic toxicology is recognized by geneticists and researchers concerned with the genetic impact of man-made chemicals. In Genotoxicity Assessment: Methods and Protocols, expert researchers in the field provide comprehensive genetic toxicology protocols. These include in vitro and in vivo protocols on mutation assays, cytogenetic techniques, and primary DNA damage, assays in alternate to animal models, and updated ICH guidelines. Written in the highly successful Methods in Molecular Biology series format, the chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as key tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Genotoxicity Assessment: Methods and Protocols seeks to aid research students and scientists working in regulatory toxicology as well as biomedical, biochemical and pharmaceutical sciences.
In Vitro Toxicology details the protocols and methods of in vitro testing, highlighting the usefulness of models, methods and the cost-effectiveness and reproducibility of such methodologies. The current approaches and strategies required to develop an easy, reliable, validated and high throughput system for use in alternative animal models to circumvent in vivo testing are discussed in detail. The book also includes chapters on the principles involved in the general selection and use of models that address safety concerns, regulatory acceptance and the current understandings and strategies for the identification of biomarkers in toxicity testing. Furthermore, principles involved in the general selection and use of models that address the issues of safety concerns and regulatory acceptance of these models are discussed, making the book beneficial to students, scientists, and regulators working in toxicology, as well as those in the field of chemicals and the safety assessment of novel materials.
This first volume chronicles the early stages of the outbreak and world-wide spread of SARS-Cov-2 (COVID-19) and delineates the role of several disciplines in therapeutic and control measures. Documenting the epidemiologic response from China, the clinical evaluation, pathology and intial therapeutics that were available during the first 6 months and onwards of the outbreak, this book records how the response to the pandemic was mounted and how various branches of science and research combined to rapidly expand our understanding of the disease.
Mutagenicity: Assays and Applications presents an extensive examination of the detection, assessment and future of mutagenicity, particularly as it concerns human health and the environment. Chapters focused on specific types of mutagens or testing methods for their detection collectively explore the current state of human and environmental mutagenesis, future perspectives and regulatory needs. The test procedures for measuring mutagenicity, their advantages and limitations are described with practical and procedural detail, along with their presentation and data processing aspects. It is an essential reference covering the breadth and depth of the field of mutagenicity studies and regulation. By providing both important introductory material and practical assays and applications, this book is useful to graduate students, academic and industry researchers and regulators at various stages of their careers, leading to improved risk assessment and regulation.
Concerns about the adverse effects of chemicals present in the environment have created a need for better systems to assess their potential consequences on human health. One potential solution is the versatile and state-of-the-art Comet assay. Simple, sensitive, rapid and visual, this modern toxicological method allows quantitative and qualitative assessment of DNA damage in single cells. This assay is used in diverse fields ranging from clinical applications, human monitoring and environmental toxicology through to genetic toxicity testing. This updated and revised edition of The Comet Assay in Toxicology provides the latest information on this important tool. It addresses, in-depth, the different protocols, statistical analyses and applications used worldwide. It also includes the guidelines recommended by the Working Group on Comet Assay. The book begins with a review of the genesis of the assay for those new to the technique and goes on to explain procedures followed to assess different types of DNA damage, various applications of the assay, and guidelines for the conduct of the assay in in vitro and in vivo systems. New chapters written for this edition will provide information on the most contemporary approaches and applications, including in silico approaches, on meta-analysis of data and on the application of the Comet Assay in nanotoxicology. This book will serve as both a reference and a guide to students as well as investigators in the biomedical, biochemical and pharmaceutical sciences fields.
Nanoparticles have numerous biomedical applications including drug delivery, bone implants and imaging. A protein corona is formed when proteins existing in a biological system cover the nanoparticle surface. The formation of a nanoparticle-protein corona, changes the behaviour of the nanoparticle, resulting in new biological characteristics and influencing the circulation lifetime, accumulation, toxicity, cellular uptake and agglomeration. This book provides a detailed understanding of nanoparticle-protein corona formation, its biological significance and the factors that govern the formation of coronas. It also explains the impact of nanoparticle-protein interactions on biological assays, ecotoxicity studies and proteomics research. It will be of interest to researchers studying the application of nanoparticles as well as toxicologists and pharmaceutical chemists.
This second volume chronicles the later stages of the outbreak of SARS-Cov-2 (COVID-19) and delineates the role of several disciplines in therapeutic and control measures highliting the response from specific coutries of note and efforts to repurpose and produce new therapeutics and vaccines. By addressing considerations of efficacy and safety of drugs and chemicals used to combat COVID-19, virtually in real-time, this book documents and highlights the advances in science and place the toxicology, pharmaceutical science, public health and medical community in a better position to advise in future epidemics.
This current edition explores new tests for genotoxicity testing, along with other well-known techniques. This will further help in our understanding of the genotoxic effects of chemicals. The book has different sections dealing with various assays for gene mutation, chromosomal abnormalities, primary DNA damage, etc. It also delves into plant models, animals and their alternates, as well as in silico approaches for genetic toxicology. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Genotoxicity Assessment: Methods and Protocols, Second Edition serves as a highly useful and ready resource for research students and scientists working in regulatory toxicology as well as biomedical, biochemical, and pharmaceutical sciences.
|
You may like...
Wild About You - A 60-Day Devotional For…
John Eldredge, Stasi Eldredge
Hardcover
R309
Discovery Miles 3 090
|