![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. Contents Oriented Matroids, the Pattern Recognition Problem, and Tope Committees Boolean Intervals Dehn-Sommerville Type Relations Farey Subsequences Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets Committees of Set Families, and Relative Blocking Constructions in Posets Layers of Tope Committees Three-Tope Committees Halfspaces, Convex Sets, and Tope Committees Tope Committees and Reorientations of Oriented Matroids Topes and Critical Committees Critical Committees and Distance Signals Symmetric Cycles in the Hypercube Graphs
As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences
This original research monograph concerns various aspects of how (based on decompositions of vertices of hypercube graphs with respect to their symmetric cycles) the vertex sets of related discrete hypercubes, as well as the power sets of corresponding ground sets, emerge from rank 2 oriented matroids, from underlying rank 2 systems of linear inequalities, and thus literally from arrangements of straight lines crossing a common point on a piece of paper. It reveals some beautiful and earlier hidden fragments in the true foundations of discrete mathematics. The central observation made and discussed in the book from various viewpoints consists in that 2t subsets of a finite t-element set Et, which form in a natural way a cyclic structure (well, just t subsets that are the vertices of a path in the cycle suffice), allow us to construct any of 2t subsets of the set Et by means of a more than elementary voting procedure expressed in basic linear algebraic terms. The monograph will be of interest for researchers and students in the fields of discrete mathematics, theoretical computer science, Boolean function theory, enumerative combinatorics and combinatorics on words, combinatorial optimization, coding theory, discrete and computational geometry, etc.
|
![]() ![]() You may like...
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
|