![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The mucins (mucus glycoproteins) have long been a complex corner of glycoprotein biology. While dramatic advances in the separation, structural an- ysis, biosynthesis, and degradation have marked the progress in general glycop- tein understanding, the mucins have lagged behind. The reasons for this lack of progress have always been clear and are only now being resolved. The mucins are very large molecules; they are difficult to separate from other molecules present in mucosal secretions or membranes; they are often degraded owing to natural protective functions or to isolation methodology and their peptide and oligos- charide structures are varied and complex. Understanding these molecules has demanded progress in several major areas. Isolation techniques that protect the intact mucins and allow dissociation from other adsorbed but discrete molecules needed to be developed and accepted by all researchers in the field. Improved methods for the study of very large molecules with regard to their aggregation and polymerization were also needed. Structural analysis of the peptide domains and the multitude of oligosaccharide chains was required for smaller sample sizes, for multiple samples, and in shorter time. In view of these problems it is perhaps not surprising that the mucins have remained a dilemma, of obvious biological importance and interest, but very difficult to analyze.
The mucins (mucus glycoproteins) have long been a complex corner of glycoprotein biology. While dramatic advances in the separation, structural an- ysis, biosynthesis, and degradation have marked the progress in general glycop- tein understanding, the mucins have lagged behind. The reasons for this lack of progress have always been clear and are only now being resolved. The mucins are very large molecules; they are difficult to separate from other molecules present in mucosal secretions or membranes; they are often degraded owing to natural protective functions or to isolation methodology and their peptide and oligos- charide structures are varied and complex. Understanding these molecules has demanded progress in several major areas. Isolation techniques that protect the intact mucins and allow dissociation from other adsorbed but discrete molecules needed to be developed and accepted by all researchers in the field. Improved methods for the study of very large molecules with regard to their aggregation and polymerization were also needed. Structural analysis of the peptide domains and the multitude of oligosaccharide chains was required for smaller sample sizes, for multiple samples, and in shorter time. In view of these problems it is perhaps not surprising that the mucins have remained a dilemma, of obvious biological importance and interest, but very difficult to analyze.
|
You may like...
Beyond Zuccotti Park - Freedom of…
Ronald Shiffman, Rick Bell, …
Hardcover
R2,448
Discovery Miles 24 480
Ontology Engineering in a Networked…
Mari Carmen Suarez-Figueroa, Asuncion Gomez-Perez, …
Hardcover
R1,479
Discovery Miles 14 790
Remapping Urban Heat Islands Atlases in…
Hisham Abusaada, Abeer Elshater, …
Hardcover
R6,190
Discovery Miles 61 900
Trustworthy Ubiquitous Computing
Ismail Khalil, Teddy Mantoro
Hardcover
R1,434
Discovery Miles 14 340
|