Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 60 matches in All Departments
This book is based on the 18 presentations during the 21st workshop on Advances in Analog Circuit Design. Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development. "
This book addresses the challenges of designing high performance analog-to-digital converters (ADCs) based on the "smart data converters" concept, which implies context awareness, on-chip intelligence and adaptation. Readers will learn to exploit various information either a-priori or a-posteriori (obtained from devices, signals, applications or the ambient situations, etc.) for circuit and architecture optimization during the design phase or adaptation during operation, to enhance data converters performance, flexibility, robustness and power-efficiency. The authors focus on exploiting the a-priori knowledge of the system/application to develop enhancement techniques for ADCs, with particular emphasis on improving the power efficiency of high-speed and high-resolution ADCs for broadband multi-carrier systems.
Wireless sensor networks have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. Unfortunately, radio power consumption is still a major bottleneck to the wide adoption of this technology. Different directions have been explored to minimize the radio consumption, but the major drawback of the proposed solutions is a reduced wireless link robustness. The primary goal of Architectures and Synthesizers for Ultra-low Power Fast Frequency-Hopping WSN Radios is to discuss, in detail, existing and new architectural and circuit level solutions for ultra-low power, robust, uni-directional and bi-directional radio links. Architectures and Synthesizers for Ultra-low Power Fast Frequency-Hopping WSN Radios guides the reader through the many system, circuit and technology trade-offs he will be facing in the design of communication systems for wireless sensor networks. Finally, this book, through different examples realized in both advanced CMOS and bipolar technologies opens a new path in the radio design, showing how radio link robustness can be guaranteed by techniques that were previously exclusively used in radio systems for middle or high end applications like Bluetooth and military communications while still minimizing the overall system power consumption.
Analog Circuit Design contains the contribution of 18 tutorials of the 18th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 18 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Smart Data Converters: Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology, Filters on Chip: Chaired by Herman Casier, AMI Semiconductor Fellow, Multimode Transmitters: Chaired by Prof. M. Steyaert, Catholic University Leuven, Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
Abstract This chapter lays the foundation for the work presented in latter chapters. The potential of 60 GHz frequency bands for high data rate wireless transfer is discussed and promising applications are enlisted. Furthermore, the challenges related to 60 GHz IC design are presented and the chapter concludes with an outline of the book. Keywords Wireless communication 60 GHz Millimeter wave integrated circuit design Phase-locked loop CMOS Communication technology has revolutionized our way of living over the last century. Since Marconi's transatlantic wireless experiment in 1901, there has been tremendous growth in wireless communication evolving from spark-gap telegraphy to today's mobile phones equipped with Internet access and multimedia capabilities. The omnipresence of wireless communication can be observed in widespread use of cellular telephony, short-range communication through wireless local area networks and personal area networks, wireless sensors and many others. The frequency spectrum from 1 to 6 GHz accommodates the vast majority of current wireless standards and applications. Coupled with the availability of low cost radio frequency (RF) components and mature integrated circuit (IC) techn- ogies, rapid expansion and implementation of these systems is witnessed. The downside of this expansion is the resulting scarcity of available bandwidth and allowable transmit powers. In addition, stringent limitations on spectrum and energy emissions have been enforced by regulatory bodies to avoid interference between different wireless systems.
Analog Circuit Design contains eighteen tutorials, reflecting the contributions of six experts, as presented at the 15th workshop on Advances in Analog Circuit Design (AACD). Provides 18 overviews of analog circuit design in High-Speed A-D Converters, Automotive Electronics and Ultra-Low Power Wireless. An essential reference source for the latest developments in the field, tutorial coverage makes it suitable for advanced design courses.
Analog Circuit Design contains the contribution of 18 experts from the 13th International Workshop on Advances in Analog Circuit Design. It is number 13 in the successful series of Analog Circuit Design. It provides 18 excellent overviews of analog circuit design in: Sensor and Actuator Interfaces, Integrated High-Voltage Electronics and Power Management, and Low-Power and High-Resolution ADC s. Analog Circuit Design is an essential reference source for analog circuits designers and researchers wishing to keep abreast with the latest developments in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
The book gives an overview of the state-of-the-art in SigmaDelta design and of the challenges for future realizations. It provides an understanding of the fundamental power efficiency of SigmaDelta converters. In addition, it presents an analysis of the power consumption in the decimation filter. Understanding these power/performance trade-offs, it becomes clear that straight-forward digitization of a conditioning channel, i.e. exchanging analog for digital conditioning, comes at a major power penalty.
"Integrated 60GHz RF Beamforming in CMOS "describes new concepts and design techniques that can be used for 60GHz phased array systems. First, general trends and challenges in low-cost high data-rate 60GHz wireless system are studied, and the phased array technique is introduced to improve the system performance. Second, the system requirements of phase shifters are analyzed, and different phased array architectures are compared. Third, the design and implementation of 60GHz passive and active phase shifters in a CMOS technology are presented. Fourth, the integration of 60GHz phase shifters with other key building blocks such as low noise amplifiers and power amplifiers are described in detail. Finally, this book describes the integration of a 60GHz CMOS amplifier and an antenna in a printed circuit-board (PCB) package.
Analog design still has, unfortunately, a flavor of art. Art can be beautiful. However, art in itself is difficult to teach to students and difficult to transfer from experienced analog designers to new trainee designers in companies. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References aims to systemize analog design. The use of orthogonalization of the design of the fundamental quality aspects (noise, distortion, and bandwidth) and hierarchy in the subsequent design steps, enables designers to achieve high-performance designs, in a relatively short time. As a result of the systematic design procedure, the effect of design decisions on the circuit performance is made clear. Additionally, the use of resources for reaching a specified performance is tracked. This book, therefore, describes the structured electronic design of high-performance harmonic oscillators and bandgap references. The structured design of harmonic oscillators includes the maximization of the carrier-to- noise ratio by means of tapping, i.e. an impedance adaption method for noise matching. The bandgap reference, a popular implementation of a voltage reference, is studied via the unusual concept of the linear combination of base-emitter voltages. The presented method leads to the design of high-performance references in CMOS and Bipolar technology. Using this concept, on a high level of abstraction the quality with respect to, for instance, noise and power-supply rejection can be identified. In this book, it is shown with several design examples that this method provides an excellent starting point for the design of high-performance bandgap references. Auxiliary to the harmonic-oscillator and bandgap reference design are the negative- feedback amplifiers. In this book the systematic design of the dynamic behavior is emphasized. By means of the identification of the dominant poles, it is possible to give an upper limit of the attainable bandwidth, even before the real frequency compensation is accomplished. Structured Electronic Design: High-Performance Harmonic Oscillators and Bandgap References is a valuable book for researchers and designers, as well as students in the field of analog design. It helps both the experienced and trainee designer to come to grips with the design of analog circuits. The presented method is illustrated by several well- described design examples.
This book describes a unique approach to smart receiver system design. It starts with the analysis of a very basic, single-path receiver structure, then using similar methods, extends the analysis to a more complicated multi-path receiver. Within the multi-path structure, two different types of phased -array architectures are discussed: Analog beam-forming, and digital beam-forming. The pros and cons are studied, and the gaps are identified. Whereas previous books in this area focus mainly on phased-array circuit implementations, this book fills a gap by providing a system-level approach and introduces new methods for developing smart systems.
Smart and Flexible Digital-to-Analog Converters proposes new concepts and implementations for flexibility and self-correction of current-steering digital-to-analog converters (DACs) which allow the attainment of a wide range of functional and performance specifications, with a much reduced dependence on the fabrication process. DAC linearity is analysed with respect to the accuracy of the DAC unit elements. A classification is proposed of the many different current-steering DAC correction methods. The classification reveals methods that do not yet exist in the open literature. Further, this book systematically analyses self-calibration correction methods for the various DAC mismatch errors. For instance, efficient calibration of DAC binary currents is identified as an important missing method. This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance. Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.< DAC linearity is analysed with respect to the accuracy of the DAC unit elements. A classification is proposed of the many different current-steering DAC correction methods. The classification reveals methods that do not yet exist in the open literature. Further, this book systematically analyses self-calibration correction methods for the various DAC mismatch errors. For instance, efficient calibration of DAC binary currents is identified as an important missing method. This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance. Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties. This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance. Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties. Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.
Sigma Delta converters are a very popular choice for the A/D converter in multi-standard, mobile and cellular receivers. Key A/D converter specifications are high dynamic range, robustness, scalability, low-power and low EMI. "Robust Sigma Delta Converters "presents a requirement derivation of a Sigma Delta modulator applied in a receiver for cellular and connectivity, and shows trade-offs between RF and ADC. The book proposes to categorize these requirements in 5 quality indicators which can be used to qualify a system, namely accuracy, robustness, flexibility, efficiency and emission. In the book these quality indicators are used to categorize Sigma Delta converter theory. A few highlights on each of these quality indicators are; Quality indicators: provide a means to quantify system quality.Accuracy: introduction of new Sigma Delta Modulator architectures.Robustness: a significant extension on clock jitter theory based on phase and error amplitude error models. Extension of the theory describing aliasing in Sigma Delta converters for different types of DACs in the feedback loop. Flexibility: introduction of a Sigma Delta converter bandwidth scaling theory leading to very flexible Sigma Delta converters. Efficiency: introduction of new Figure-of-Merits which better reflect performance-power trade-offs. Emission: analysis of Sigma Delta modulators on emission is not part of the book The quality indicators also reveal that, to exploit nowadays advanced IC technologies, things should be done as much as possible digital up to a limit where system optimization allows reducing system margins. At the end of the book Sigma Delta converter implementations are shown which are digitized on application-, architecture-, circuit- and layout-level. "Robust Sigma Delta Converters "is written under the assumption that the reader has some background in receivers and in A/D conversion.
Analog Circuit Design contains the contribution of 18 tutorials of the 17th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 17 in this successful series of Analog Circuit Design.
Log-domain and translinear filters provide a competitive alternative to the challenges of ever increasing low-voltage, low-power and high frequency demands in the area of continuous-time filters. Since translinear filters are fundamentally large-signal linear, they are capable of realizing a large dynamic range in combination with excellent tunability characteristics. Large-signal linearity is achieved by exploiting the accurate exponential behavior of the bipolar transistor or the subthreshold MOS transistor. A generalization of the dynamic translinear principle exploiting the square law behavior of the MOS transistor is theoretically possible, but not practically relevant. Translinear and log-domain filters are based on the dynamic translinear principle, a generalization of the conventional (static) translinear principle. Besides their application for linear filters, dynamic translinear circuits can also be used for the realization of non-linear dynamic functions, such as oscillators, RMS-DC converters and phase-locked loops. Dynamic Translinear and Log-Domain Circuits: Analysis and Synthesis covers both the analysis and synthesis of translinear circuits. The theory is presented using one unifying framework for both static and dynamic translinear networks, which is based on a current-mode approach. General analysis methods are presented, including the large-signal and non-stationary analysis of noise. A well-structured synthesis method is described greatly enhancing the designability of log-domain and translinear circuits. Comparisons are made with respect to alternative analysis and synthesis methods presented in the literature. The theory is illustrated and verified by various examples and realizations. Dynamic Translinear and Log-Domain Circuits: Analysis and Synthesis is an excellent reference for researchers and circuit designers, and may be used as a text for advanced courses on the topic.
The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. Adaptive RF Front-Ends for Hand-Held Applications presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control, and adaptive power control. Several adaptive impedance control techniques are discussed, using a priori knowledge on matching network properties, in order to simplify robust 2-dimensional control. A generic protection concept is presented, based on adaptive power control, which improves the ruggedness of a power amplifier or preserves its linearity under extremes. It comprises over-voltage, over-temperature, and under-voltage protection.
This book investigates solutions, benefits, limitations, and costs associated with multi-standard operation of RF front-ends and their ability to adapt to variable radio environments. Next, it highlights the optimization of RF front-ends to allow maximum performance within a certain power budget, while targeting full integration. Finally, the book investigates possibilities for low-voltage, low-power circuit topologies in CMOS technology.
Today, wireless infrared transmission has entered our homes, offices, industry and health care, with applications in the field of remote control, telemetry and local communication. Low-Power Wireless Infrared Communications is about the underlying technology. As most equipment is battery-powered, the emphasis is on power optimization of the infrared transmission system. System parameters as well as environmental parameters that determine the eventual transmission quality are identified, to facilitate well-reasoned system design. Many design rules, based on calculations, measurements and simulations, are presented to help the designer push the performance close to the limits set by nature and the available technology. Firstly, the basic transmission link is introduced, and strategies to optimize its signal-to-noise ratio are discussed. Lighting flicker is identified as a possible source of interference. Then, receiver noise and bandwidth are discussed. It is argued that noise optimization and bandwidth optimization do not necessarily conflict. The following chapters provide the reader with an overview of modulation and synchronization techniques. Pulse position modulation is recognized as an attractive technique for low-power purposes. As receiver synchronization in those systems is a subject hardly covered by literature, an in-depth discussion of possible synchronization subsystems is included. This book is essential reading for researchers and designers of infrared communication systems and those who are involved in standardization activities (Infrared Data Association, IrDA). For those who are new to the area, the first chapter serves as an ideal introduction.
This book describes innovative techniques and the theoretical background for design and analysis of high performance RF/Microwave transmitters. It introduces new, robust linearization/efficiency enhancement techniques, applicable to all of the switched mode power amplifiers. Novel analysis methods associated with these new techniques are also introduced and supporting measurement results are documented. Innovative graphical representation methods are used to help the reader understand the matter intuitively. Applications for the techniques discussed are very extensive, ranging from data convertors to RF/Microwave/mm-wave wireless/wire line transmitters. The authors have avoided using lengthy formulas in the discussion and have used an intuitive and simple approach to go through the necessary details. Readers will gain valuable understanding of the dither phenomenon, its mechanism, effect and undesired side effects. The novel architectures introduced are simple, don't require complicated DSP techniques and are easy to implement.
This book contains the revised contributions of the 18 tutorial speakers at the tenth AACD 2001 in Noordwijk, the Netherlands, April 24-26. The conference was organized by Marcel Pelgrom, Philips Research Eindhoven, and Ed van Tuijl, Philips Research Eindhoven and Twente University, Enschede, the Netherlands. The program committee consisted of: Johan Huijsing, Delft University of Technology Arthur van Roermund, Eindhoven University of Technology Michiel Steyaert, Catholic University of Leuven The program was concentrated around three main topics in analog circuit design. Each of these topics has been covered by six papers. The three main topics are: Scalable Analog Circuit Design High-Speed D/A Converters RF Power Amplifiers Other topics covered before in this series: 2000 High-Speed Analog-to-Digital Converters Mixed Signal Design PLL's and Synthesizers 1999 XDSL and other Communication Systems RF MOST Models Integrated Filters and Oscillators 1998 1-Volt- Electronics Mixed-Mode Systems Low-Noise and RF Power Amplifiers for Telecommunication vii viii 1997 RF A-D Converters Sensor and Actuator Interfaces Low-Noise Oscillators, PLL's and Synthesizers 1996 RF CMOS Circuit Design Bandpass Sigma Delta and other Converters Translinear Circuits 1995 Low-Noise, Low-Power, Low-Voltage Mixed Mode with CAD Trials Voltage, Current and Time References 1994 Low-Power Low Voltage Integrated Filters Smart power 1993 Mixed-Mode A/D Design Sensor Interfaces Communications Circuits 1992 Op Amps ADC's Analog CAD We hope to serve the analog design community with these series of books and plan to continue this series in the future. Johan H.
In the 11th edition in this successful series, the topics are structured-mixed-mode design, multi-bit sigma-delta converters and short range RF circuits. The book provides valuable information and excellent overviews of analogue circuit design, CAD and RF systems.
"Analog Circuit Design" contains the contribution of 18
tutorials of the 19th workshop on Advances in Analog Circuit
Design. Each part discusses a specific to-date topic on new and
valuable design ideas in the area of analog circuit design. Each
part is presented by six experts in that field and state of the art
information is shared and overviewed. This book is number 20 in
this successful series of "Analog Circuit Design," providing
valuable information and excellent overviews of: Robust
Design, "Analog Circuit Design" is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course."
Analog Circuit Design is based on the yearly Advances in Analog Circuit Design workshop. The aim of the workshop is to bring together designers of advanced analogue and RF circuits for the purpose of studying and discussing new possibilities and future developments in this field. Selected topics for AACD 2007 are: Sensors, Actuators and Power Drivers for the Automotive and Industrial Environment (Tue 27 March) - Chaired by Herman Casier, AMI Semiconductor Fellow, Belgium Integrated PA's from Wireline to RF (Wed 28 March) - Chaired by Prof. Michiel Steyaert, Catholic University, Leuven Very High Frequency Front Ends (Thu 29 March) - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology
Switched capacitor (SC) techniques are well proven to be excellent candidates for implementing critical analogue functions with high accuracy, surpassing other analogue techniques when embedded in mixed-signal CMOS VLSI. Conventional SC circuits are primarily limited in accuracy by a) capacitor matching and b) the accuracy with which a differential amplifier can squeeze charge from one capacitor to another between clock periods.In Switched-Capacitor Techniques for High-Accuracy Filter and ADC Design, alternative SC techniques are proposed which allow the achievement of higher intrinsic analogue functional accuracy than previously possible in such application areas as analogue filter and ADC design...
Number 12 in the successful series of Analog Circuit Design
provides valuable information and excellent overviews of analogue
circuit design, CAD and RF systems. The series is an ideal
reference for those involved in analogue and mixed-signal
design. |
You may like...
Maze Runner: Chapter II - The Scorch…
Thomas Brodie-Sangster, Nathalie Emmanuel, …
Blu-ray disc
R32
Discovery Miles 320
|