Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This book provides readers with a single-source reference to current sensing integrated circuit design. It is written in handbook style, including systematic guidelines and implementation examples. The authors focus on the implementation of wide-bandwidth current sensing on a single microchip, toward usage in applications such as sensing, control and optimization of the energy flow in growth areas like industrial electronics, renewable energies, smart grids, electromobility and the Internet of Things. Provides readers with a comprehensive, all-in-one source for current sensing integrated circuit design, including implementation examples; Discusses modeling and optimization of on-chip Rogowski coil and Hall sensor in both lateral and vertical orientation; Includes noise reduction techniques, such as auto-zeroing and chopping; Covers open-loop and closed-loop sensor front-end design; Presents the first on-chip current sensor with a planar coil placed besides a power line to measure internal signal currents and the first off-chip current sensor with a helix-shaped coil for external signal currents in the multi-MHz region.
This book provides a comprehensive, single-source on resonant switched-capacitor converters. It is written in the style of a handbook, with systematic guidelines, and includes implementation examples. The authors explore integrated hybrid resonant DCDC converters in order to achieve highly compact, energy efficient and cost-effective power management solutions in the growing fields of wearables and internet-of-things applications. They provide an introduction into hybrid converters as a new and promising converter class, which merges capacitive and inductive conversion concepts into one. Coverage ranges from fundamentals to implementation details, including topics such as power stage design, gate drive schemes, different control mechanisms for resonant operation and integrated passives. Introduces a new, multi-ratio resonant converter architecture, which enables lower switching frequencies and better passive component utilization; Discusses circuit block design for high efficiency of the power stage; Explores implementation details and concepts for integrated passives; Derives models, implements and compares to each other different control mechanisms.
This book explores integrated gate drivers with emphasis on new gallium nitride (GaN) power transistors, which offer fast switching along with minimum switching losses. It serves as a comprehensive, all-in-one source for gate driver IC design, written in handbook style with systematic guidelines. The authors cover the full range from fundamentals to implementation details including topics like power stages, various kinds of gate drivers (resonant, non-resonant, current-source, voltage-source), gate drive schemes, driver supply, gate loop, gate driver power efficiency and comparison silicon versus GaN transistors. Solutions are presented on the system and circuit level for highly integrated gate drivers. Coverage includes miniaturization by higher integration of subfunctions onto the IC (buffer capacitors), as well as more efficient switching by a multi-level approach, which also improves robustness in case of extremely fast switching transitions. The discussion also includes a concept for robust operation in the highly relevant case that the gate driver is placed in distance to the power transistor. All results are widely applicable to achieve highly compact, energy efficient, and cost-effective power electronics solutions.
Bernhard Weicht provides a multi-layered analysis of how we understand and construct care in everyday life, the meanings it has for ourselves, our families, our relationships, identities and our sense of society and what is right and proper, making an original contribution to the discussion of the nature of care ethics and its political potential.
Bringing together contributions from an international group of social scientists, this collection examines diverse crises, both historical and contemporary, which implicate market forces, widening inequalities, social exclusion, forms of resistance, and ideological polarisation. The Commonalities of Global Crises offers carefully researched case studies which stretch across large geographical distances- from Egypt to the US and from northern, central, eastern and southern Europe to South America- and covers timely issues including human rights, slavery, care, migration, racism, and the far right. The volume demonstrates that such different settings and diverse concerns are characterized by a common tension in which the crises that unfold around pressures of widening marketization and commodification are met by the (re)building or re-assertion of various communities, and competing politics of solidarity and nostalgia.
This book provides a systematic and comprehensive insight into current sensing techniques. In addition to describing theoretical and practical aspects of current sensing, the author derives practical design guidelines for achieving an optimal performance through a systematic analysis of different circuit principles. Voltage sense amplifiers are also considered, since they are used as a final comparator in a current sense amplifier. Innovative concepts, such as compensation of the bitline multiplexer and auto-power-down, are elucidated. Although the focus is on embedded static random access memory (SRAM), the material presented applies to any current-providing memory type, e.g. also to emerging memory technologies such as MRAM. The book will appeal to design engineers in industry and also to researchers wishing to learn about, and apply, current sensing techniques.
This book explores integrated gate drivers with emphasis on new gallium nitride (GaN) power transistors, which offer fast switching along with minimum switching losses. It serves as a comprehensive, all-in-one source for gate driver IC design, written in handbook style with systematic guidelines. The authors cover the full range from fundamentals to implementation details including topics like power stages, various kinds of gate drivers (resonant, non-resonant, current-source, voltage-source), gate drive schemes, driver supply, gate loop, gate driver power efficiency and comparison silicon versus GaN transistors. Solutions are presented on the system and circuit level for highly integrated gate drivers. Coverage includes miniaturization by higher integration of subfunctions onto the IC (buffer capacitors), as well as more efficient switching by a multi-level approach, which also improves robustness in case of extremely fast switching transitions. The discussion also includes a concept for robust operation in the highly relevant case that the gate driver is placed in distance to the power transistor. All results are widely applicable to achieve highly compact, energy efficient, and cost-effective power electronics solutions.
Bernhard Weicht provides a multi-layered analysis of how we understand and construct care in everyday life, the meanings it has for ourselves, our families, our relationships, identities and our sense of society and what is right and proper, making an original contribution to the discussion of the nature of care ethics and its political potential.
System-on-a-chip (SoC) designs result in a wide range of high-complexity, high-value semiconductor products. As the technology scales towards smaller feature sizes and chips grow larger, a speed limitation arises due to an in creased RC delay associated with interconnection wires. Innovative circuit techniques are required to achieve the speed needed for high-performance signal processing. Current sensing is considered as a promising circuit class since it is inherently faster than conventional voltage sense amplifiers. How ever, especially in SRAM, current sensing has rarely been used so far. Practi cal implementations are challenging because they require sophisticated analog circuit techniques in a digital environment. The objective of this book is to provide a systematic and comprehen sive insight into current sensing techniques. Both theoretical and practical aspects are covered. Design guidelines are derived by systematic analysis of different circuit principles. Innovative concepts like compensation of the bit line multiplexer and auto-power-down will be explained based on theory and experimental results. The material will be interesting for design engineers in industry as well as researchers who want to learn about and apply current sensing techniques. The focus is on embedded SRAM but the material presented can be adapted to single-chip SRAM and to any other current-providing memory type as well. This includes emerging memory technologies like magnetic RAM (MRAM) and Ovonic Unified Memory (OUM). Moreover, it is also applicable to array like structures such as CMOS camera chips and to circuits for signal trans mission along highly capacitive busses."
This book provides a comprehensive, single-source on resonant switched-capacitor converters. It is written in the style of a handbook, with systematic guidelines, and includes implementation examples. The authors explore integrated hybrid resonant DCDC converters in order to achieve highly compact, energy efficient and cost-effective power management solutions in the growing fields of wearables and internet-of-things applications. They provide an introduction into hybrid converters as a new and promising converter class, which merges capacitive and inductive conversion concepts into one. Coverage ranges from fundamentals to implementation details, including topics such as power stage design, gate drive schemes, different control mechanisms for resonant operation and integrated passives. Introduces a new, multi-ratio resonant converter architecture, which enables lower switching frequencies and better passive component utilization; Discusses circuit block design for high efficiency of the power stage; Explores implementation details and concepts for integrated passives; Derives models, implements and compares to each other different control mechanisms.
This book is a comprehensive reference for power management IC design. The book covers the circuit design of main power management circuits like charge pumps, bridge drivers, linear and switched-mode voltage regulators. Sub-circuits include power switches, gate drivers and their supply, level shifters, the error amplifier, current sensing and control loop design. Circuits for protection and diagnostics as well as system design aspects like pin-out, floor planning, grounding/supply guidelines will also be addressed.
This book provides readers with a single-source reference to current sensing integrated circuit design. It is written in handbook style, including systematic guidelines and implementation examples. The authors focus on the implementation of wide-bandwidth current sensing on a single microchip, toward usage in applications such as sensing, control and optimization of the energy flow in growth areas like industrial electronics, renewable energies, smart grids, electromobility and the Internet of Things. Provides readers with a comprehensive, all-in-one source for current sensing integrated circuit design, including implementation examples; Discusses modeling and optimization of on-chip Rogowski coil and Hall sensor in both lateral and vertical orientation; Includes noise reduction techniques, such as auto-zeroing and chopping; Covers open-loop and closed-loop sensor front-end design; Presents the first on-chip current sensor with a planar coil placed besides a power line to measure internal signal currents and the first off-chip current sensor with a helix-shaped coil for external signal currents in the multi-MHz region.
This book is a comprehensive, all-in-one source on design of monolithic GaN power ICs. It is written in handbook style with systematic guidelines and includes implementation examples. It covers the full range from technology fundamentals to implementation details including design techniques specific for GaN technology. It provides a detailed loss analysis based on comparative measurements between silicon and GaN based converters to provide an understanding of the relations between design choices and results which can be transferred to other power converter systems.
|
You may like...
|