Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book was written mainly during the Spring periods of 2008 and 2009, when the ?rst author was visiting Maastricht University. Financial s- port both from the Dutch Science Foundation NWO (grants 040. 11. 013 and 0. 40. 11. 082) and from the research institute METEOR (Maastricht Univ- sity) is gratefully acknowledged. Jerusalem Bezalel Peleg Maastricht Hans Peters April 2010 v Contents Preview to this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Part I Representations of constitutions 1 Introduction to Part I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2 Arrow's constitution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 3 Arrow's Impossibility Theorem and its implications. . . . . . . . . 4 1. 4 Ga ]rdenfors's model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5 Notes and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Constitutions, e?ectivity functions, and game forms . . . . . . 7 2. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 Constitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 3 Constitutions and e?ectivity functions . . . . . . . . . . . . . . . . . . . . 12 2. 4 Game forms and a representation theorem. . . . . . . . . . . . . . . . . 16 2. 5 Representation and simultaneous exercising of rights. . . . . . . . 19 2. 6 Notes and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Nash consistent representations. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. 2 Existence of Nash consistent representations: a general result 22 3. 3 The case of ?nitely many alternatives. . . . . . . . . . . . . . . . . . . . . 24 3. 4 Nash consistent representations of topological e?ectivity functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3. 5 Veto functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3. 5. 1 Finitely many alternatives. . . . . . . . . . . . . . . . . . . . . . . . . 34 3. 5. 2 Topological veto functions. . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 6 Liberalism and Pareto optimality of Nash equilibria. . . . . . . . . 40 3. 7 Notes and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 4 Acceptable representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
This book systematically presents the main solutions of cooperative games: the core, bargaining set, kernel, nucleolus, and the Shapley value of TU games as well as the core, the Shapley value, and the ordinal bargaining set of NTU games. The authors devote a separate chapter to each solution, wherein they study its properties in full detail. In addition, important variants are defined or even intensively analyzed.
This book was written mainly during the Spring periods of 2008 and 2009, when the ?rst author was visiting Maastricht University. Financial s- port both from the Dutch Science Foundation NWO (grants 040. 11. 013 and 0. 40. 11. 082) and from the research institute METEOR (Maastricht Univ- sity) is gratefully acknowledged. Jerusalem Bezalel Peleg Maastricht Hans Peters April 2010 v Contents Preview to this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Part I Representations of constitutions 1 Introduction to Part I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2 Arrow's constitution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 3 Arrow's Impossibility Theorem and its implications. . . . . . . . . 4 1. 4 Ga ]rdenfors's model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5 Notes and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Constitutions, e?ectivity functions, and game forms . . . . . . 7 2. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 Constitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 3 Constitutions and e?ectivity functions . . . . . . . . . . . . . . . . . . . . 12 2. 4 Game forms and a representation theorem. . . . . . . . . . . . . . . . . 16 2. 5 Representation and simultaneous exercising of rights. . . . . . . . 19 2. 6 Notes and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Nash consistent representations. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. 2 Existence of Nash consistent representations: a general result 22 3. 3 The case of ?nitely many alternatives. . . . . . . . . . . . . . . . . . . . . 24 3. 4 Nash consistent representations of topological e?ectivity functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3. 5 Veto functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3. 5. 1 Finitely many alternatives. . . . . . . . . . . . . . . . . . . . . . . . . 34 3. 5. 2 Topological veto functions. . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 6 Liberalism and Pareto optimality of Nash equilibria. . . . . . . . . 40 3. 7 Notes and comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 4 Acceptable representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4. 1 Motivation and summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
This book systematically presents the main solutions of cooperative games: the core, bargaining set, kernel, nucleolus, and the Shapley value of TU games as well as the core, the Shapley value, and the ordinal bargaining set of NTU games. The authors devote a separate chapter to each solution, wherein they study its properties in full detail. In addition, important variants are defined or even intensively analyzed.
This book is a theoretical and completely rigorous analysis of voting in committees that provides mathematical proof of the existence of democratic voting systems, which are immune to the manipulation of preferences of coalitions of voters. The author begins by determining the power distribution among voters that is induced by a voting rule, giving particular consideration to choice by plurality voting and Borda's rule. He then constructs, for all possible committees, well-behaved representative voting procedures which are not distorted by strategic voting, giving complete solutions for certain important classes of committees. The solution to the problem of mass elections is fully characterised.
|
You may like...
|