![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This thesis presents a method for reliably and robustly producing samples of amyloid- (A ) by capturing them at various stages of aggregation, as well as the results of subsequent imaging with various atomic force microscopy (AFM) methods, all of which add value to the data gathered by collecting information on the peptide's nanomechanical, elastic, thermal or spectroscopical properties. Amyloid- (A ) undergoes a hierarchy of aggregation following a structural transition, making it an ideal subject of study using scanning probe microscopy (SPM), dynamic light scattering (DLS) and other physical techniques. By imaging samples of A with Ultrasonic Force Microscopy, a detailed substructure to the morphology is revealed, which correlates well with the most advanced cryo-EM work. Early stage work in the area of thermal and spectroscopical AFM is also presented, and indicates the promise these techniques may hold for imaging sensitive and complex biological materials. This thesis demonstrates that physical techniques can be highly complementary when studying the aggregation of amyloid peptides, and allow the detection of subtle differences in their aggregation processes.
This thesis presents a method for reliably and robustly producing samples of amyloid- (A ) by capturing them at various stages of aggregation, as well as the results of subsequent imaging with various atomic force microscopy (AFM) methods, all of which add value to the data gathered by collecting information on the peptide's nanomechanical, elastic, thermal or spectroscopical properties. Amyloid- (A ) undergoes a hierarchy of aggregation following a structural transition, making it an ideal subject of study using scanning probe microscopy (SPM), dynamic light scattering (DLS) and other physical techniques. By imaging samples of A with Ultrasonic Force Microscopy, a detailed substructure to the morphology is revealed, which correlates well with the most advanced cryo-EM work. Early stage work in the area of thermal and spectroscopical AFM is also presented, and indicates the promise these techniques may hold for imaging sensitive and complex biological materials. This thesis demonstrates that physical techniques can be highly complementary when studying the aggregation of amyloid peptides, and allow the detection of subtle differences in their aggregation processes.
|
You may like...
Lung Cancer, An Issue of…
Roy S. Herbst, Daniel Morgensztern
Hardcover
R2,125
Discovery Miles 21 250
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
Advances in Cancer Biomarkers Research
Anand Narayan Singh, Seema Nayak, …
Paperback
R3,253
Discovery Miles 32 530
Molecular Biomarkers in Cancer Detection…
Ranbir Chander Sobti, Awtar Krishan, …
Paperback
R3,258
Discovery Miles 32 580
|