Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This book provides a comprehensive summary of the status of emerging sensor technologies and provides a framework for future advances in the field. Chemical sensors have gained in importance in the past decade for applications that include homeland security, medical and environmental monitoring and also food safety. A desirable goal is the ability to simultaneously analyze a wide variety of environmental and biological gases and liquids in the field and to be able to selectively detect a target analyte with high specificity and sensitivity. The goal is to realize real-time, portable and inexpensive chemical and biological sensors and to use these as monitors for handheld gas, environmental pollutant, exhaled breath, saliva, urine, or blood, with wireless capability.In the medical area, frequent screening can catch the early development of diseases, reduce the suffering of patients due to late diagnoses, and lower the medical cost. For example, a 96% survival rate has been predicted in breast cancer patients if the frequency of screening is every three months. This frequency cannot be achieved with current methods of mammography due to high cost to the patient and invasiveness (radiation). In the area of detection of medical biomarkers, many different methods, including enzyme-linked immunsorbent assay (ELISA), particle-based flow cytometric assays, electrochemical measurements based on impedance and capacitance, electrical measurement of microcantilever resonant frequency change, and conductance measurement of semiconductor nanostructures, gas chromatography (GC), ion chromatography, high density peptide arrays, laser scanning quantitiative analysis, chemiluminescence, selected ion flow tube (SIFT), nanomechanical cantilevers, bead-based suspension microarrays, magnetic biosensors and mass spectrometry (MS) have been employed. Depending on the sample condition, these methods may show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor.
Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high speed memory, logic and photonic devices. Useful spintronic devices will need materials with practical magnetic ordering temperatures and current research points to gallium and aluminium nitride magnetic superconductors as having great potential. Gallium Nitride Processing for Electronics, Sensors and Spintronics details current research into the properties of III-nitride semiconductors and their usefulness in novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high temperature electronics. Written by three of the worlda (TM)s leading researchers in nitride semiconductors, the book provides an excellent introduction to gallium nitride technology and will be of interest to all reseachers and industrial practitioners wishing to keep up to date with developments that may lead to the next generation of transistors, lasers and integrated magnetic sensors.
Gallium Oxide: Technology, Devices and Applications discusses the wide bandgap semiconductor and its promising applications in power electronics, solar blind UV detectors, and in extreme environment electronics. It also covers the fundamental science of gallium oxide, providing an in-depth look at the most relevant properties of this materials system. High quality bulk Ga2O3 is now commercially available from several sources and n-type epi structures are also coming onto the market. As researchers are focused on creating new complex structures, the book addresses the latest processing and synthesis methods. Chapters are designed to give readers a complete picture of the Ga2O3 field and the area of devices based on Ga2O3, from their theoretical simulation, to fabrication and application.
There has been tremendous progress lately in the field of III-nitride (GaN, AlN, InN) semiconductors and their device applications. For example, the invention of III-nitride-based blue laser diodes was the key to a new high-density data storage technology, the Blue-ray disc. Concurrently, improvements in III-nitride-based solid state light sources have led to their use in an increasing number of illumination applications, moving steadily toward the goal of general lighting. This book focuses on three emerging areas for III-nitride applications - chemical and biological sensing, energy conversion and controlled light-matter interactions and was based on the potential for these applications to improve our quality of life, as well as the superior material properties III-nitrides offer in terms of high chemical stability, excellent biocompatibility, efficient light absorption from the complete solar spectrum and strong light-matter coupling. Topics include: chemical and biological sensing; surface and interface properties; electronic devices; energy conversion; controlled light-matter interactions; light-emitting diodes and growth and processing.
There has been tremendous progress lately in the field of III-nitride (GaN, AlN, InN) semiconductors and their device applications. For example, the invention of III-nitride-based blue laser diodes was the key to a new high-density data storage technology, the Blue-ray disc. Concurrently, improvements in III-nitride-based solid state light sources have led to their use in an increasing number of illumination applications, moving steadily toward the goal of general lighting. This book focuses on three emerging areas for III-nitride applications - chemical and biological sensing, energy conversion and controlled light-matter interactions and was based on the potential for these applications to improve our quality of life, as well as the superior material properties III-nitrides offer in terms of high chemical stability, excellent biocompatibility, efficient light absorption from the complete solar spectrum and strong light-matter coupling. Topics include: chemical and biological sensing; surface and interface properties; electronic devices; energy conversion; controlled light-matter interactions; light-emitting diodes and growth and processing.
Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high speed memory, logic and photonic devices. Useful spintronic devices will need materials with practical magnetic ordering temperatures and current research points to gallium and aluminium nitride magnetic superconductors as having great potential. This book details current research into the properties of III-nitride semiconductors and their usefulness in novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high temperature electronics. Written by three leading researchers in nitride semiconductors, the book provides an excellent introduction to gallium nitride technology and will be of interest to all reseachers and industrial practitioners wishing to keep up to date with developments that may lead to the next generation of transistors, lasers and integrated magnetic sensors.
The authors present a study of the H-infinity control problem and related topics for descriptor systems, described by a set of nonlinear differential-algebraic equations. They derive necessary and sufficient conditions for the existence of a controller solving the standard nonlinear H-infinity control problem considering both state and output feedback. One such condition for the output feedback control problem to be solvable is obtained in terms of Hamilton-Jacobi inequalities and a weak coupling condition; a parameterization of output feedback controllers solving the problem is also provided. All of these results are then specialized to the linear case. The derivation of state-space formulae for all controllers solving the standard H-infinity control problem for descriptor systems is proposed. Among other important topics covered are balanced realization, reduced-order controller design and mixed H2/H-infinity control. "H-infinity Control for Nonlinear Descriptor Systems" provides a comprehensive introduction and easy access to advanced topics.
Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including original theoretical and experimental work. It also explains how these investigations have translated into applications and products. Written by experts in the field, the chapters review cutting-edge progress on semiconductor and nanomaterial-based sensors. An excellent introduction to the subject, this book is also an outstanding reference for those working on different sensor applications. It addresses various subfields, including: GaN-based sensor arrays for quick and reliable medical testing Optical sensors Wireless remote hydrogen sensing systems MOS-based, thin-film, and nanowire-based sensors The wide-bandgap semiconductor sensors discussed in this book offer many advantages as replacements for silicon-based sensors, including their high chemical resistance, high-temperature operation, and blue and ultraviolet optoelectronic behaviors. Although assays exist for biomedical detection, they are limited by various factors. Nanomaterial devices, such as the sensors examined in this book, are currently the best option for moving toward fast, label-free, sensitive, and selective multiple-detection systems for biological and medical sensing applications. Providing sufficient background information and technical detail, this is an excellent resource for advanced level undergraduate and graduate students as well as researchers in gas, chemical, biological, and medical sensors.
Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including original theoretical and experimental work. It also explains how these investigations have translated into applications and products. Written by experts in the field, the chapters review cutting-edge progress on semiconductor and nanomaterial-based sensors. An excellent introduction to the subject, this book is also an outstanding reference for those working on different sensor applications. It addresses various subfields, including: GaN-based sensor arrays for quick and reliable medical testing Optical sensors Wireless remote hydrogen sensing systems MOS-based, thin-film, and nanowire-based sensors The wide-bandgap semiconductor sensors discussed in this book offer many advantages as replacements for silicon-based sensors, including their high chemical resistance, high-temperature operation, and blue and ultraviolet optoelectronic behaviors. Although assays exist for biomedical detection, they are limited by various factors. Nanomaterial devices, such as the sensors examined in this book, are currently the best option for moving toward fast, label-free, sensitive, and selective multiple-detection systems for biological and medical sensing applications. Providing sufficient background information and technical detail, this is an excellent resource for advanced level undergraduate and graduate students as well as researchers in gas, chemical, biological, and medical sensors.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|