Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Foreword by Dieter Jungnickel The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background. This text is suitable for courses in commutative algebra, finite commutative algebra, and coding theory. It is also suitable as a supplementary text for courses in discrete mathematics, finite fields, finite rings, etc.
This book provides a gentle introduction to the foundations of Algebraic Geometry, starting from computational topics (ideals and homogeneous ideals, zero loci of ideals) up to increasingly intrinsic and abstract arguments, like 'Algebraic Varieties', whose natural continuation is a more advanced course on the theory of schemes, vector bundles and sheaf-cohomology.Valuable to students studying Algebraic Geometry and Geometry, A First Course in Algebraic Geometry and Algebraic Varieties contains around 60 solved exercises to help students thoroughly understand the theories introduced in the book. Proofs of the results are carried out in full details.Many examples are discussed which reinforces the understanding of both the theoretical elements and their consequences as well as the possible applications of the material.
This book provides a gentle introduction to the foundations of Algebraic Geometry, starting from computational topics (ideals and homogeneous ideals, zero loci of ideals) up to increasingly intrinsic and abstract arguments, like 'Algebraic Varieties', whose natural continuation is a more advanced course on the theory of schemes, vector bundles and sheaf-cohomology.Valuable to students studying Algebraic Geometry and Geometry, A First Course in Algebraic Geometry and Algebraic Varieties contains around 60 solved exercises to help students thoroughly understand the theories introduced in the book. Proofs of the results are carried out in full details.Many examples are discussed which reinforces the understanding of both the theoretical elements and their consequences as well as the possible applications of the material.
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.
This volume is dedicated to Ciro Ciliberto on the occasion of his 70th birthday and contains refereed papers, offering an overview of important parts of current research in algebraic geometry and related research in the history of mathematics. It presents original research as well as surveys, both providing a valuable overview of the current state of the art of the covered topics and reflecting the versatility of the scientific interests of Ciro Ciliberto.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|