![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ? ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ? ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
Studienarbeit aus dem Jahr 2006 im Fachbereich BWL - Recht, Note: 1.7, AKAD-Fachhochschule Pinneberg, Sprache: Deutsch, Abstract: Diese Hauptseminararbeit hatte zum Inhalt den normativen und schuldrechtlichen Teil des Tarifvertrages zu beleuchten. Tarifvertrage sind Kollektivvertrage, die eine spezifisch arbeitsrechtliche Rechtsquelle bilden und fur den Inhalt des Arbeitsverhaltnisses von grosster praktischer Bedeutung sind. Der Tarifvertrag hat seine Rechtsgrundlage im TVG (Tarifvertragsgesetz). So begrundet ein Tarifvertrag nicht nur zwischen Tarifsvertragsparteien schuldrechtliche Beziehungen, sondern setzt in seinem normativen Teil fur seinen Geltungsbereich objektives Recht fur Inhalt, Abschluss oder Beendigung von Arbeitsverhaltnissen. 2 TVG stellt klar, wer in einem Tarifvertrag als Vertragspartei in Betracht kommt. Auf Arbeitnehmerseite sind dies Gewerkschaften, auf Arbeitgeberseite entweder der einzelne Arbeitgeber oder Vereinigungen von Arbeitgebern (Arbeitgeberverbande). Damit ein Tarifvertrag wirksam ist, muss neben der Tariffahigkeit (Fahigkeit einen Tarifvertrag als Vertragspartei abzuschliessen) auch die Tarifzustandigkeit gegeben sein. Letztere bezeichnet die Zustandigkeit der Verbande fur einen abzuschliessenden Tarifvertrag; z.B. konnen Verbande der Metallindustrie keine Tarifvertrage fur den offentlichen Dienst abschliessen. Das Recht, Tarifvertrage auszuhandeln und abzuschliessen, geht aus der Tarifautonomie hervor, die verfassungsrechtlich durch das Koalitionsgrundrecht des Art. 9 Abs. 3 GG garantiert ist. Die Tarifautonomie hat den Sinn, dass die Ordnung des Arbeitslebens vorrangig selbstandig durch die Tarifvertragsparteien festgelegt wird und nicht durch den Gesetzgeber. Tarifvertrage unterliegen als privatrechtliche Vertrage dem allgemeinen Vertragsrecht nach 145 ff. BGB und gemass 1 Abs. 2 TVG ist fur sie die Schriftform vorgeschrieb
Studienarbeit aus dem Jahr 2005 im Fachbereich BWL - Unternehmensforschung, Operations Research, Note: 1.3, AKAD-Fachhochschule Pinneberg, Sprache: Deutsch, Abstract: Aus einer rund herum Betrachtungsweise werden samfliche relevante Bestandteile und Faktoren des Outplacements zielgenau dargestellt.
|
![]() ![]() You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|