Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
This book emerged from a DoE/NSF-sponsored workshop, held in Tahoe City, California, October 2000. About fifty invited participants presented state-of-the-art research on topics such as: - terrain modeling- multiresolution subdivision- wavelet-based scientific data compression- topology-based visualization- data structures, data organization and indexing schemes for scientific data visualization.All invited papers were carefully refereed, resulting in this collection. The book will be of great interest to researchers, graduate students and professionals dealing with scientific visualization and its applications.
Linear algebra is growing in importance. 3D entertainment, animations in movies and video games are developed using linear algebra. Animated characters are generated using equations straight out of this book. Linear algebra is used to extract knowledge from the massive amounts of data generated from modern technology. The Fourth Edition of this popular text introduces linear algebra in a comprehensive, geometric, and algorithmic way. The authors start with the fundamentals in 2D and 3D, then move on to higher dimensions, expanding on the fundamentals and introducing new topics, which are necessary for many real-life applications and the development of abstract thought. Applications are introduced to motivate topics. The subtitle, A Geometry Toolbox, hints at the book's geometric approach, which is supported by many sketches and figures. Furthermore, the book covers applications of triangles, polygons, conics, and curves. Examples demonstrate each topic in action. This practical approach to a linear algebra course, whether through classroom instruction or self-study, is unique to this book. New to the Fourth Edition: Ten new application sections. A new section on change of basis. This concept now appears in several places. Chapters 14-16 on higher dimensions are notably revised. A deeper look at polynomials in the gallery of spaces. Introduces the QR decomposition and its relevance to least squares. Similarity and diagonalization are given more attention, as are eigenfunctions. A longer thread on least squares, running from orthogonal projections to a solution via SVD and the pseudoinverse. More applications for PCA have been added. More examples, exercises, and more on the kernel and general linear spaces. A list of applications has been added in Appendix A. The book gives instructors the option of tailoring the course for the primary interests of their students: mathematics, engineering, science, computer graphics, and geometric modeling.
The Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
This non-traditional introduction to the mathematics of scientific computation describes the principles behind the major methods, from statistics, applied mathematics, scientific visualization, and elsewhere, in a way that is accessible to a large part of the scientific community. Introductory material includes computational basics, a review of coordinate systems, an introduction to facets (planes and triangle meshes) and an introduction to computer graphics. The scientific computing part of the book covers topics in numerical linear algebra (basics, solving linear system, eigen-problems, SVD, and PCA) and numerical calculus (basics, data fitting, dynamic processes, root finding, and multivariate functions). The visualization component of the book is separated into three parts: empirical data, scalar values over 2D data, and volumes.
Putting the G into CAGD, the authors provide a much-needed practical and basic introduction to computer-aided geometric design. This book will help readers understand and use the elements of computer-aided geometric design, curves and surfaces, without the mathematical baggage that is necessary only for more advanced work. Though only minimal background in mathematics is needed to understand the bookis concepts, the book covers an amazing array of topics such as Bezier and B-spline curves and their corresponding surfaces, subdivision surfaces, and NURBS (Non-Uniform Rational B-Splines). Also included are techniques such as interpolation and least squares methods.
Non-Uniform Rational B-Splines have become the de facto standard in CAD/CAM and computer graphics. This well-known book covers NURBS from their geometric beginnings to their industrial applications. The second edition incorporates new results and a chapter on Pythagorean curves, a development that shows promise in applications such as NC machining or robot motion control. Includes more than fifty new figures.
The Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
The nature of the physical Universe has been increasingly better understood in recent years, and cosmological concepts have undergone a rapid evolution (see, e.g., [11], [2],or [5]). Although there are alternate theories, it is generally believed that the large-scale relationships and homogeneities that we see can only be explainedby having the universe expand suddenlyin a very early "in?ationary" period. Subsequent evolution of the Universe is described by the Hubble expansion, the observation that the galaxies are ?ying away from each other. We can attribute di?erent rates of this expansion to domination of di?erent cosmological processes, beginning with radiation, evolving to matter domination, and, relatively recently, to vacuum domination (the Cosmological Constant term)[4]. We assume throughout that we will be relying as much as possible on observational data, with simulations used only for limited purposes, e.g., the appearance of the Milky Wayfrom nearbyintergalactic viewpoints. The visualization of large-scale astronomical data sets using?xed, non-interactive animations has a long history. Several books and ?lms exist, ranging from "Cosmic View: The Universe in Forty Jumps" [3] by Kees Boeke to "Powers of 10" [6,13] by Charles and Ray Eames, and the recent Imax ?lm "Cosmic Voyage" [15]. We have added our own contribution [9], "Cosmic Clock," which is an animation based entirely on the concepts and implementation described in this paper.
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: - curve and surface modelling - non-manifold modelling in CAD - multiresolution analysis of complex geometric models - surface reconstruction - variational design - computational geometry of curves and surfaces - 3D meshing - geometric modelling for scientific visualization - geometric models for biomedical applications
19 papers presented by international experts give a state-of-the-art survey of the relevant problems and issues in modeling, CAD/CAM, scientific visualization, and computational geometry. The following topics are treated: * surface design and fairing * subdivision schemes * variational design * NURBS * reverse engineering * physically-based modelling * medical imaging
In this volume experts from university and industry are presenting new technologies for solving industrial problems as well as important and practicable impulses for new research. The following topics are treated: - solid modelling - geometry processing - feature modelling - product modelling - surfaces over arbitrary topologies - blending methods - scattered data algorithms - smooting and fairing algorithms - NURBS 21 articles are giving a state-of-the-art survey of the relevant problems and issues in the rapidly growing area of geometric modelling.
This non-traditional introduction to the mathematics of scientific computation describes the principles behind the major methods, from statistics, applied mathematics, scientific visualization, and elsewhere, in a way that is accessible to a large part of the scientific community. Introductory material includes computational basics, a review of coordinate systems, an introduction to facets (planes and triangle meshes) and an introduction to computer graphics. The scientific computing part of the book covers topics in numerical linear algebra (basics, solving linear system, eigen-problems, SVD, and PCA) and numerical calculus (basics, data fitting, dynamic processes, root finding, and multivariate functions). The visualization component of the book is separated into three parts: empirical data, scalar values over 2D data, and volumes.
Putting the G into CAGD, the authors provide a much-needed practical and basic introduction to computer-aided geometric design. This book will help readers understand and use the elements of computer-aided geometric design, curves and surfaces, without the mathematical baggage that is necessary only for more advanced work. Though only minimal background in mathematics is needed to understand the bookis concepts, the book covers an amazing array of topics such as Bezier and B-spline curves and their corresponding surfaces, subdivision surfaces, and NURBS (Non-Uniform Rational B-Splines). Also included are techniques such as interpolation and least squares methods.
|
You may like...
Labour Relations in South Africa
Not available
Dr Hanneli Bendeman, Dr Bronwyn Dworzanowski-Venter
Paperback
|