0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Algorithmic Learning in a Random World (Hardcover, 2005 ed.): Vladimir Vovk, Alex Gammerman, Glenn Shafer Algorithmic Learning in a Random World (Hardcover, 2005 ed.)
Vladimir Vovk, Alex Gammerman, Glenn Shafer
R4,878 Discovery Miles 48 780 Ships in 12 - 17 working days

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022): Vladimir Vovk, Alexander Gammerman, Glenn Shafer Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022)
Vladimir Vovk, Alexander Gammerman, Glenn Shafer
R4,838 Discovery Miles 48 380 Ships in 12 - 17 working days

This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described - conformal predictors - are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties. Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions. Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.

A Mathematical Theory of Evidence (Paperback): Glenn Shafer A Mathematical Theory of Evidence (Paperback)
Glenn Shafer
R1,028 Discovery Miles 10 280 Ships in 12 - 17 working days

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental.

The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
JBL T110 In-Ear Headphones (White)
R229 Discovery Miles 2 290
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Tenet
John David Washington, Robert Pattinson, … DVD  (1)
R51 Discovery Miles 510
Dala Craft Pom Poms - Assorted Colours…
R34 Discovery Miles 340
6mm Yoga Mat & Carry Bag [Blue]
R191 Discovery Miles 1 910
Hask Argan Oil Argan Oil Healing Shine…
R90 Discovery Miles 900
Energizer Max D 4 Pack
R166 Discovery Miles 1 660

 

Partners