![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Fatigue Life Prediction of Solder Joints in Electronic Packages
with ANSYS(r) describes the method in great detail starting from
the theoretical basis. The reader is supplied with an add-on
software package to ANSYS(r) that is designed for solder joint
fatigue reliability analysis of electronic packages. Specific steps
of the analysis method are discussed through examples without
leaving any room for confusion. The add-on package along with the
examples make it possible for an engineer with a working knowledge
of ANSYS(r) to perform solder joint reliability analysis.
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS (R), a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS (R) commands and ANSYS (R) screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS (R) through both the Graphics User Interface (GUI) and the ANSYS (R) Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: * An introduction to FEM * Fundamentals and analysis capabilities of ANSYS (R) * Fundamentals of discretization and approximation functions * Modeling techniques and mesh generation in ANSYS (R) * Weighted residuals and minimum potential energy * Development of macro files * Linear structural analysis * Heat transfer and moisture diffusion * Nonlinear structural problems * Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS (R)-GUI Electronic supplementary material for using ANSYS (R) can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader's own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS (R), a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS (R) commands and ANSYS (R) screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS (R) through both the Graphics User Interface (GUI) and the ANSYS (R) Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: * An introduction to FEM * Fundamentals and analysis capabilities of ANSYS (R) * Fundamentals of discretization and approximation functions * Modeling techniques and mesh generation in ANSYS (R) * Weighted residuals and minimum potential energy * Development of macro files * Linear structural analysis * Heat transfer and moisture diffusion * Nonlinear structural problems * Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS (R)-GUI Electronic supplementary material for using ANSYS (R) can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader's own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."
Fatigue Life Prediction of Solder Joints in Electronic Packages with ANSYS (R) describes the method in great detail starting from the theoretical basis. The reader is supplied with an add-on software package to ANSYS (R) that is designed for solder joint fatigue reliability analysis of electronic packages. Specific steps of the analysis method are discussed through examples without leaving any room for confusion. The add-on package along with the examples make it possible for an engineer with a working knowledge of ANSYS (R) to perform solder joint reliability analysis. Fatigue Life Prediction of Solder Joints in Electronic Packages with ANSYS (R) allows the engineers to conduct fatigue reliability analysis of solder joints in electronic packages.
|
![]() ![]() You may like...
Woman Evolve - Break Up With Your Fears…
Sarah Jakes Roberts
Paperback
![]()
Media and Protest Logics in the Digital…
Francis L.F. Lee, Joseph M. Chan
Hardcover
R3,108
Discovery Miles 31 080
|