Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This text provides the undergraduate chemical engineering student with the necessary tools for problem solving in chemical or bio-engineering processes. In a friendly, simple, and unified framework, the exposition aptly balances theory and practice. It uses minimal mathematical concepts, terms, algorithms, and describes the main aspects of chemical process optimization using MATLAB and GAMS. Numerous examples and case studies are designed for students to understand basic principles of each optimization method and elicit the immediate discovery of practical applications. Problem sets are directly tied to real-world situations most commonly encountered in chemical engineering applications. Chapters are structured with handy learning summaries, terms and concepts, and problem sets, and individually reinforce the basics of particular optimization methods. Additionally, the wide breadth of topics that may be encountered in courses such as Chemical Process Optimization, Chemical Process Engineering, Optimization of Chemical Processes, are covered in this accessible text. The book provides formal introductions to MATLAB, GAMS, and a revisit to pertinent aspects of undergraduate calculus. While created for coursework, this text is also suitable for independent study. A full solutions manual is available to instructors who adopt the text for their course.
Presenting a fresh look at process control, this new text demonstrates state-space approach shown in parallel with the traditional approach to explain the strategies used in industry today. Modern time-domain and traditional transform-domain methods are integrated throughout and explain the advantages and limitations of each approach; the fundamental theoretical concepts and methods of process control are applied to practical problems. To ensure understanding of the mathematical calculations involved, MATLAB (R) is included for numeric calculations and MAPLE for symbolic calculations, with the math behind every method carefully explained so that students develop a clear understanding of how and why the software tools work. Written for a one-semester course with optional advanced-level material, features include solved examples, cases that include a number of chemical reactor examples, chapter summaries, key terms, and concepts, as well as over 240 end-of-chapter problems, focused computational exercises and solutions for instructors.
|
You may like...
|