Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Ausgehend von einer grundlegenden Einfuhrung in Begriffe und Methoden der Algebra werden im Buch die wesentlichen Ergebnisse dargestellt und ein Einblick in viele Entwicklungen innerhalb der Algebra gegeben, die mit anderen Gebieten der Mathematik stark verflochten sind. Beginnend mit Begriffsbildungen wie Gruppe und Ring fuhrt das Buch hin zu den Korpererweiterungen und der Galoistheorie. Danach werden zentrale Teile der Theorie der Moduln, Algebren und Ringe behandelt. Die Theorie der Divisionsalgebren und ihre Klassifikation mit Hilfe der Brauergruppe werden entwickelt. Es schliessen sich Einfuhrungen in die algebraischen Zahlentheorie und die Theorie der quadratischen Formen an. In zahlreichen Supplementen findet man Ausblicke auf weiterfuhrende Themen. Betrachtet werden zum Beispiel allgemeine lineare Gruppen, Schiefpolynomringe, Darstellungen, Erweiterungen von Moduln, projektive Moduln und Frobenius-Algebren."
Es sei 9 eine endlich dimensionale Lie-Algebra uber dem Korper der komple- xen Zahlen. In der Darstellungstheorie von gist eine der am einfachsten zu stellenden Fragen die nach einer Beschreibung aller irreduziblen Darstellungen von 9 oder (iiquivalent dazu) aller einfacher Moduln uber der universellen ein- hullenden Algebra U (g) von g. Eine einfache Antwort auf diese Frage hat man nur, wenn 9 kommutativ ist. Hier ist auch U(g) kommutativ, also entsprechen die Isomorphieklassen einfa- cher U (g)-Moduln eindeutig den maximal en Idealen in U (g). Da hier U (g) zur Algebra der polynomialen Funktionen auf dem Dualraum g* von 9 isomorph ist, werden diese maximalen Ideale nach dem schwachen Nullstellensatz durch die Punkte von g* klassifiziert. Jede irreduzible Darstellung von gist demnach eindimensional, jede Linearform auf 9 legt soleh eine Darstellung fest. Fur andere Lie-Algebren sind die Verhiiltnisse viel komplizierter. 1st 9 zum Beispiel einfach, so ist bisher nur fUr g=Glz eine Klassifikation der irreduzib- len Darstellungen bekannt (vorgelegt von R Block), die jedoch weit davon ent- femt ist, iihnlich explizit wie die im kommutativen Fall zu sein. Fur noch gro- Bere Lie-Algebren scheint selbst eine solehe Klassifikation nicht erreichbar zu sein. Es scheint daher sinnvoll, zuniichst ein einfacheres Problem zu losen, das im kommutativen Fall mit dem alten zusammenfiillt. Dies ist die Untersuchung der primitiven Ideale von U(g), das heiBt der Annullatoren in U(g) der einfa- chen U(g)-Moduln. Man mag hoffen, daraus auch Informationen uber die moglichen einfachen Moduln zu erhalten.
|
You may like...
Batman v Superman - Dawn Of Justice…
Ben Affleck, Henry Cavill, …
Blu-ray disc
(16)
|