Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Multi-Agent Systems: Platoon Control and Non-Fragile Quantized Consensus aims to present recent research results in designing platoon control and non-fragile quantized consensus for multi-agent systems. The main feature of this book is that distributed adaptive sliding mode control (SMC) algorithms are proposed to guarantee strong string stability based on modified constant time headway (MCTH) policy. The MCTH policy is used to remove the unrealistic assumption in the most existing literature that initial spacing, velocity and acceleration errors are zero. This monograph investigates the platoon control issue by combining SMC technique with neural network and fuzzy logic system approximation methods.
Consumers today expect extremely realistic imagery generated in real time for interactive applications such as computer games, virtual prototyping, and scientific visualisation. However, the increasing demands for fidelity coupled with rapid advances in hardware architecture pose a challenge: how do you find optimal, sustainable solutions to accommodate both speed of rendering and quality? Real-Time Rendering: Computer Graphics with Control Engineering presents a novel framework for solving the perennial challenge of resource allocation and the trade-off between quality and speed in interactive computer graphics rendering. Conventional approaches are mainly based on heuristics and algorithms, are largely application specific, and offer fluctuating performance, particularly as applications become more complex. The solution proposed by the authors draws on powerful concepts from control engineering to address these shortcomings. Expanding the horizon of real-time rendering techniques, this book: Explains how control systems work with real-time computer graphics Proposes a data-driven modelling approach that more accurately represents the system behaviour of the rendering process Develops a control system strategy for linear and non-linear models using proportional, integral, derivative (PID) and fuzzy control techniques Uses real-world data from rendering applications in proof-of-concept experiments Compares the proposed solution to existing techniques Provides practical details on implementation, including references to tools and source code This pioneering work takes a major step forward by applying control theory in the context of a computer graphics system. Promoting cross-disciplinary research, it offers guidance for anyone who wants to develop more advanced solutions for real-time computer graphics rendering.
"The Chinese Oil Industry: History and Future" presents a wealth of tables and figures with new data on Chinese fossil fuel production and consumption, together with a peak oil model to forecast future trends in energy supply and demand. Energy experts in China and the United States provide you with a unique overview of the entire Chinese oil industry. The authors discuss trends in production and consumption of global significance through to the middle of the 21st century, including the energy returned on energy invested (EROI) for China s oil and gas. The role of oil in the industrialization of China is described
as arefour phases in the history of the Chinese oil industry.
Detailed coverage of resources and exploration, pipeline
development, refining and marketing, petroleum and natural gas
pricing policies, and international cooperation is followed by
consideration of conservation, renewable energy, and environmental
impact. The authors also address the importance of coal and the
probable future of coal production. - Presents new and previously unpublished data - Covers history and future trends in production and consumption - Introduces a new peak oil model for China - Discusses EROI trend of oil and natural gas and its consequences for the Chinese economy - Written from an objective viewpoint by leading energy experts"
Multi-Agent Systems: Platoon Control and Non-Fragile Quantized Consensus aims to present recent research results in designing platoon control and non-fragile quantized consensus for multi-agent systems. The main feature of this book is that distributed adaptive sliding mode control (SMC) algorithms are proposed to guarantee strong string stability based on modified constant time headway (MCTH) policy. The MCTH policy is used to remove the unrealistic assumption in the most existing literature that initial spacing, velocity and acceleration errors are zero. This monograph investigates the platoon control issue by combining SMC technique with neural network and fuzzy logic system approximation methods.
This book features a comprehensive analysis of the development of shale gas resources in China, with a focus on the potential environmental impacts that may result. China has the world's largest shale gas resources, which it is keen to develop to alleviate air pollution and successfully transition to a low-carbon energy future. However, one significant obstacle standing between the ambition and reality is the potentially serious environmental impacts of shale gas production. This book offers a systematic assessment of these potential impacts, including the risk of water contamination, ecological disruption due to the huge consumption of water and methane leakage. It presents valuable first-hand data collected from the authors' fieldwork in Sichuan and Chongqing and the latest information on China's current shale gas operations and also includes a set of models and methods developed to quantify the impacts. It allows readers to gain a deeper understanding of environmental regulatory management systems regarding shale gas production in China by examining whether the existing monitoring, reporting and verification (MRV) systems and environmental regulations can effectively prevent adverse impacts from shale gas production. Providing a detailed study of shale gas development in China based on an unprecedented primary dataset, the book is a valuable resource for scholars, engineers and students who are interested in the energy development and environmental risks.
|
You may like...
|