![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
Situation Assessment in Aviation focuses on new aspects of soft computing technologies for evaluation and assessment of situations in aviation scenarios. It considers technologies emerging from multisensory data fusion (MSDF), Bayesian networks (BN), and fuzzy logic (FL) to assist pilots in their decision-making. Studying MSDF, BN, and FL from the perspective of their applications to the problem of situation assessment, the book discusses the development of certain soft technologies that can be further used for devising more sophisticated technologies for a pilot’s decision-making when performing certain tasks: airplane monitoring, pair formation, attack, and threat. It explains the concepts of situation awareness, data fusion, decision fusion, Bayesian networks, fuzzy logic type 1, and interval type 2 fuzzy logic. The book also presents a hybrid technique by using BN and FL and a unique approach to the problem of situation assessment, beyond visual range and air-to-air combat, by utilizing building blocks of artificial intelligence (AI) for future development of more advanced automated systems, especially using commercial software. The book is intended for aerospace R&D engineers, systems engineers, aeronautical engineers, and aviation training professionals. It will also be useful for aerospace and electrical engineering students taking courses in Air Traffic Management, Aviation Management, Aviation Operations, and Aviation Safety Systems.
Covers flight mechanics, flight simulation, flight testing, flight control, and aeroservoelasticity. Features artificial neural network and fuzzy logic-based aspects in modeling and analysis of flight mechanics systems: aircraft parameter estimation, and reconfiguration of control. Focuses on a systems-based approach. Includes two new chapters, numerical simulation examples with a MATLAB® based approach, and end-of-chapter exercises. Includes a Solutions Manual and Figure Slides for adopting instructors.
Fills the Existing Gap of Mathematics for Data Fusion Data fusion (DF) combines large amounts of information from a variety of sources and fuses this data algorithmically, logically and, if required intelligently, using artificial intelligence (AI). Also, known as sensor data fusion (SDF), the DF fusion system is an important component for use in various applications that include the monitoring of vehicles, aerospace systems, large-scale structures, and large industrial automation plants. Data Fusion Mathematics: Theory and Practice offers a comprehensive overview of data fusion, and provides a proper and adequate understanding of the basic mathematics directly related to DF. The material covered can be used for evaluation of the performances of any designed and developed DF systems. It tries to answer whether unified data fusion mathematics can evolve from various disparate mathematical concepts, and highlights mathematics that can add credibility to the data fusion process. Focuses on Mathematical Tools That Use Data Fusion This text explores the use of statistical/probabilistic signal/image processing, filtering, component analysis, image algebra, decision making, and neuro-FL-GA paradigms in studying, developing and validating data fusion processes (DFP). It covers major mathematical expressions, and formulae and equations as well as, where feasible, their derivations. It also discusses SDF concepts, DF models and architectures, aspects and methods of type 1 and 2 fuzzy logics, and related practical applications. In addition, the author covers soft computing paradigms that are finding increasing applications in multisensory DF approaches and applications. This book: Explores the use of interval type 2 fuzzy logic and ANFIS in DF Covers the mathematical treatment of many types of filtering algorithms, target-tracking methods, and kinematic DF methods Presents single and multi-sensor tracking and fusion mathematics Considers specific DF architectures in the context of decentralized systems Discusses information filtering, Bayesian approaches, several DF rules, image algebra and image fusion, decision fusion, and wireless sensor network (WSN) multimodality fusion Data Fusion Mathematics: Theory and Practice incorporates concepts, processes, methods, and approaches in data fusion that can help you with integrating DF mathematics and achieving higher levels of fusion activity, and clarity of performance. This text is geared toward researchers, scientists, teachers and practicing engineers interested and working in the multisensor data fusion area.
Going beyond the traditional field of robotics to include other mobile vehicles, Mobile Intelligent Autonomous Systems describes important theoretical concepts, techniques, approaches, and applications that can be used to build truly mobile intelligent autonomous systems (MIAS). It offers a comprehensive treatment of robotics and MIAS, as well as related disciplines, helping readers understand the subject from a system-theoretic and practical point of view. Organized into three sections, the book progresses from conceptual foundations to MIAS and robotics systems and then examines allied technologies. With an emphasis on recent research and developments, experts from various fields cover key aspects of this rapidly emerging area, including: Path and motion planning Obstacle avoidance in a dynamic environment Direct biological-brain control of a mobile robot Sensor and image data fusion Autonomous decision making and behavior modeling in robots Hydro-MiNa robot technology Adaptive algorithms for smart antennas Control methods for autonomous micro-air vehicles Neuro-fuzzy fault-tolerant auto-landing for aircraft H-infinity filter based estimation for simultaneous localization and mapping Where relevant, concepts and theories are illustrated with block/flow diagrams and numerical simulations in MATLAB (R). An integrated exploration of the theory and practice of MIAS and robotics, this is a valuable reference and recipe book for research and industry.
Using MATLAB? examples wherever possible, Multi-Sensor Data Fusion with MATLAB explores the three levels of multi-sensor data fusion (MSDF): kinematic-level fusion, including the theory of DF; fuzzy logic and decision fusion; and pixel- and feature-level image fusion. The authors elucidate DF strategies, algorithms, and performance evaluation mainly for aerospace applications, although the methods can also be applied to systems in other areas, such as biomedicine, military defense, and environmental engineering. After presenting several useful strategies and algorithms for DF and tracking performance, the book evaluates DF algorithms, software, and systems. It next covers fuzzy logic, fuzzy sets and their properties, fuzzy logic operators, fuzzy propositions/rule-based systems, an inference engine, and defuzzification methods. It develops a new MATLAB graphical user interface for evaluating fuzzy implication functions, before using fuzzy logic to estimate the unknown states of a dynamic system by processing sensor data. The book then employs principal component analysis, spatial frequency, and wavelet-based image fusion algorithms for the fusion of image data from sensors. It also presents procedures for combing tracks obtained from imaging sensor and ground-based radar. The final chapters discuss how DF is applied to mobile intelligent autonomous systems and intelligent monitoring systems. Fusing sensors? data can lead to numerous benefits in a system's performance. Through real-world examples and the evaluation of algorithmic results, this detailed book provides an understanding of MSDF concepts and methods from a practical point of view. Select MATLAB programs are available for download on www.crcpress.com
Fills the Existing Gap of Mathematics for Data Fusion Data fusion (DF) combines large amounts of information from a variety of sources and fuses this data algorithmically, logically and, if required intelligently, using artificial intelligence (AI). Also, known as sensor data fusion (SDF), the DF fusion system is an important component for use in various applications that include the monitoring of vehicles, aerospace systems, large-scale structures, and large industrial automation plants. Data Fusion Mathematics: Theory and Practice offers a comprehensive overview of data fusion, and provides a proper and adequate understanding of the basic mathematics directly related to DF. The material covered can be used for evaluation of the performances of any designed and developed DF systems. It tries to answer whether unified data fusion mathematics can evolve from various disparate mathematical concepts, and highlights mathematics that can add credibility to the data fusion process. Focuses on Mathematical Tools That Use Data Fusion This text explores the use of statistical/probabilistic signal/image processing, filtering, component analysis, image algebra, decision making, and neuro-FL-GA paradigms in studying, developing and validating data fusion processes (DFP). It covers major mathematical expressions, and formulae and equations as well as, where feasible, their derivations. It also discusses SDF concepts, DF models and architectures, aspects and methods of type 1 and 2 fuzzy logics, and related practical applications. In addition, the author covers soft computing paradigms that are finding increasing applications in multisensory DF approaches and applications. This book: Explores the use of interval type 2 fuzzy logic and ANFIS in DF Covers the mathematical treatment of many types of filtering algorithms, target-tracking methods, and kinematic DF methods Presents single and multi-sensor tracking and fusion mathematics Considers specific DF architectures in the context of decentralized systems Discusses information filtering, Bayesian approaches, several DF rules, image algebra and image fusion, decision fusion, and wireless sensor network (WSN) multimodality fusion Data Fusion Mathematics: Theory and Practice incorporates concepts, processes, methods, and approaches in data fusion that can help you with integrating DF mathematics and achieving higher levels of fusion activity, and clarity of performance. This text is geared toward researchers, scientists, teachers and practicing engineers interested and working in the multisensor data fusion area.
Going beyond the traditional field of robotics to include other mobile vehicles, Mobile Intelligent Autonomous Systems describes important theoretical concepts, techniques, approaches, and applications that can be used to build truly mobile intelligent autonomous systems (MIAS). It offers a comprehensive treatment of robotics and MIAS, as well as related disciplines, helping readers understand the subject from a system-theoretic and practical point of view. Organized into three sections, the book progresses from conceptual foundations to MIAS and robotics systems and then examines allied technologies. With an emphasis on recent research and developments, experts from various fields cover key aspects of this rapidly emerging area, including:
Where relevant, concepts and theories are illustrated with block/flow diagrams and numerical simulations in MATLAB . An integrated exploration of the theory and practice of MIAS and robotics, this is a valuable reference and recipe book for research and industry.
Control Systems: Classical, Modern, and AI-Based Approaches provides a broad and comprehensive study of the principles, mathematics, and applications for those studying basic control in mechanical, electrical, aerospace, and other engineering disciplines. The text builds a strong mathematical foundation of control theory of linear, nonlinear, optimal, model predictive, robust, digital, and adaptive control systems, and it addresses applications in several emerging areas, such as aircraft, electro-mechanical, and some nonengineering systems: DC motor control, steel beam thickness control, drum boiler, motional control system, chemical reactor, head-disk assembly, pitch control of an aircraft, yaw-damper control, helicopter control, and tidal power control. Decentralized control, game-theoretic control, and control of hybrid systems are discussed. Also, control systems based on artificial neural networks, fuzzy logic, and genetic algorithms, termed as AI-based systems are studied and analyzed with applications such as auto-landing aircraft, industrial process control, active suspension system, fuzzy gain scheduling, PID control, and adaptive neuro control. Numerical coverage with MATLAB (R) is integrated, and numerous examples and exercises are included for each chapter. Associated MATLAB (R) code will be made available.
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
|
![]() ![]() You may like...
|