Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Fuzzy modeling usually comes with two contradictory requirements: interpretability, which is the capability to express the real system behavior in a comprehensible way, and accuracy, which is the capability to faithfully represent the real system. In this framework, one of the most important areas is linguistic fuzzy modeling, where the legibility of the obtained model is the main objective. This task is usually developed by means of linguistic (Mamdani) fuzzy rule-based systems. An active research area is oriented towards the use of new techniques and structures to extend the classical, rigid linguistic fuzzy modeling with the main aim of increasing its precision degree. Traditionally, this accuracy improvement has been carried out without considering the corresponding interpretability loss. Currently, new trends have been proposed trying to preserve the linguistic fuzzy model description power during the optimization process. Written by leading experts in the field, this volume collects some representative researcher that pursue this approach.
Fuzzy modeling has become one of the most productive and successful results of fuzzy logic. Among others, it has been applied to knowledge discovery, automatic classification, long-term prediction, or medical and engineering analysis. The research developed in the topic during the last two decades has been mainly focused on exploiting the fuzzy model flexibility to obtain the highest accuracy. This approach usually sets aside the interpretability of the obtained models. However, we should remember the initial philosophy of fuzzy sets theory directed to serve the bridge between the human understanding and the machine processing. In this challenge, the ability of fuzzy models to express the behavior of the real system in a comprehensible manner acquires a great importance. This book collects the works of a group of experts in the field that advocate the interpretability improvements as a mechanism to obtain well balanced fuzzy models.
Dr. Jay Liebowitz Orkand Endowed Chair in Management and Technology University of Maryland University College Graduate School of Management & Technology 3501 University Boulevard East Adelphi, Maryland 20783-8030 USA jliebowitz@umuc. edu When I first heard the general topic of this book, Marketing Intelligent Systems or what I'll refer to as Marketing Intelligence, it sounded quite intriguing. Certainly, the marketing field is laden with numeric and symbolic data, ripe for various types of mining-data, text, multimedia, and web mining. It's an open laboratory for applying numerous forms of intelligentsia-neural networks, data mining, expert systems, intelligent agents, genetic algorithms, support vector machines, hidden Markov models, fuzzy logic, hybrid intelligent systems, and other techniques. I always felt that the marketing and finance domains are wonderful application areas for intelligent systems, and this book demonstrates the synergy between marketing and intelligent systems, especially soft computing. Interactive advertising is a complementary field to marketing where intelligent systems can play a role. I had the pleasure of working on a summer faculty f- lowship with R/GA in New York City-they have been ranked as the top inter- tive advertising agency worldwide. I quickly learned that interactive advertising also takes advantage of data visualization and intelligent systems technologies to help inform the Chief Marketing Officer of various companies. Having improved ways to present information for strategic decision making through use of these technologies is a great benefit.
This symposium was born as a research forum to present and discuss original, rigorous and significant contributions on Artificial Intelligence-based (AI) solutions-with a strong, practical logic and, preferably, with empirical applications-developed to aid the management of organizations in multiple areas, activities, processes and problem-solving; what we call Management Intelligent Systems (MiS). This volume presents the proceedings of these activities in a collection of contributions with many original approaches. They address diverse Management and Business areas of application such as decision support, segmentation of markets, CRM, product design, service personalization, organizational design, e-commerce, credit scoring, workplace integration, innovation management, business database analysis, workflow management, location of stores, etc. A wide variety of AI techniques have been applied to these areas such as multi-objective optimization and evolutionary algorithms, classification algorithms, ant algorithms, fuzzy rule-based systems, intelligent agents, Web mining, neural networks, Bayesian models, data warehousing, rough sets, etc. This volume also includes a track focused on the latest research on Intelligent Systems and Technology Enhanced Learning (iTEL), as well as its impacts for learners and institutions. It aims at bringing together researchers and developers from both the professional and the academic realms to present, discuss and debate the latest advances on intelligent systems and technology-enhanced learning The symposium was organized by the Soft Computing and Intelligent Information Systems Research Group (http: //sci2s.ugr.es) of the University of Granada (Spain) and the Bioinformatics, Intelligent System and Educational Technology Research Group (http: // bisite.usal.es/) of the University of Salamanca (Spain). The present edition was held in Salamanca (Spain) on May 22-24, 2013.
Dr. Jay Liebowitz Orkand Endowed Chair in Management and Technology University of Maryland University College Graduate School of Management & Technology 3501 University Boulevard East Adelphi, Maryland 20783-8030 USA jliebowitz@umuc. edu When I first heard the general topic of this book, Marketing Intelligent Systems or what I'll refer to as Marketing Intelligence, it sounded quite intriguing. Certainly, the marketing field is laden with numeric and symbolic data, ripe for various types of mining-data, text, multimedia, and web mining. It's an open laboratory for applying numerous forms of intelligentsia-neural networks, data mining, expert systems, intelligent agents, genetic algorithms, support vector machines, hidden Markov models, fuzzy logic, hybrid intelligent systems, and other techniques. I always felt that the marketing and finance domains are wonderful application areas for intelligent systems, and this book demonstrates the synergy between marketing and intelligent systems, especially soft computing. Interactive advertising is a complementary field to marketing where intelligent systems can play a role. I had the pleasure of working on a summer faculty f- lowship with R/GA in New York City-they have been ranked as the top inter- tive advertising agency worldwide. I quickly learned that interactive advertising also takes advantage of data visualization and intelligent systems technologies to help inform the Chief Marketing Officer of various companies. Having improved ways to present information for strategic decision making through use of these technologies is a great benefit.
Fuzzy modeling has become one of the most productive and successful results of fuzzy logic. Among others, it has been applied to knowledge discovery, automatic classification, long-term prediction, or medical and engineering analysis. The research developed in the topic during the last two decades has been mainly focused on exploiting the fuzzy model flexibility to obtain the highest accuracy. This approach usually sets aside the interpretability of the obtained models. However, we should remember the initial philosophy of fuzzy sets theory directed to serve the bridge between the human understanding and the machine processing. In this challenge, the ability of fuzzy models to express the behavior of the real system in a comprehensible manner acquires a great importance. This book collects the works of a group of experts in the field that advocate the interpretability improvements as a mechanism to obtain well balanced fuzzy models.
Fuzzy modeling usually comes with two contradictory requirements: interpretability, which is the capability to express the real system behavior in a comprehensible way, and accuracy, which is the capability to faithfully represent the real system. In this framework, one of the most important areas is linguistic fuzzy modeling, where the legibility of the obtained model is the main objective. This task is usually developed by means of linguistic (Mamdani) fuzzy rule-based systems. An active research area is oriented towards the use of new techniques and structures to extend the classical, rigid linguistic fuzzy modeling with the main aim of increasing its precision degree. Traditionally, this accuracy improvement has been carried out without considering the corresponding interpretability loss. Currently, new trends have been proposed trying to preserve the linguistic fuzzy model description power during the optimization process. Written by leading experts in the field, this volume collects some representative researcher that pursue this approach.
The 2012 International Symposium on Management Intelligent Systems is believed to be the first international forum to present and discuss original, rigorous and significant contributions on Artificial Intelligence-based (AI) solutions-with a strong, practical logic and, preferably, with empirical applications-developed to aid the management of organizations in multiple areas, activities, processes and problem-solving; i.e., what we propose to be named as Management Intelligent Systems (M"i"S). The three-day event aimed to bring together researchers interested in this promising interdisciplinary field who came from areas as varied as management, marketing, and business in general, computer science, artificial intelligence, statistics, etc. This volume presents the proceedings of these activities in a collection of contributions with many original approaches. They address diverse Management and Business areas of application such as decision support, segmentation of markets, CRM, product design, service personalization, organizational design, e-commerce, credit scoring, workplace integration, innovation management, business database analysis, workflow management, location of stores, etc. A wide variety of AI techniques have been applied to these areas such as multi-objective optimization and evolutionary algorithms, classification algorithms, ant algorithms, fuzzy rule-based systems, intelligent agents, Web mining, neural networks, Bayesian models, data warehousing, rough sets, etc. The symposium was organized by the Soft Computing and Intelligent Information Systems Research Group (http: //sci2s.ugr.es) of the University of Granada (Spain) and the Bioinformatics, Intelligent System and Educational Technology Research Group (http: //bisite.usal.es/) of the University of Salamanca (Spain). The present edition is held in Salamanca (Spain) on July 11-13, 2012.
|
You may like...
|