Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
*Provides an overview of statistical and analytic methodologies in real-world evidence to generate insights on healthcare, with a special focus on the pharmaceutical industry *Examines timely topics of high relevance to industry such as bioethical considerations, regulatory standards and compliance requirements *Highlights emerging and current trends, and provides guidelines for best practices *Illustrates methods through examples and use-case studies to demonstrate impact *Provides guidance on software choices and digital applications for successful analytics.
With ever-rising healthcare costs, evidence generation through Health Economics and Outcomes Research (HEOR) plays an increasingly important role in decision-making about the allocation of resources. Accordingly, it is now customary for health technology assessment and reimbursement agencies to request for HEOR evidence, in addition to data from clinical trials, to inform decisions about patient access to new treatment options. While there is a great deal of literature on HEOR, there is a need for a volume that presents a coherent and unified review of the major issues that arise in application, especially from a statistical perspective. Statistical Topics in Health Economics and Outcomes Research fulfils that need by presenting an overview of the key analytical issues and best practice. Special attention is paid to key assumptions and other salient features of statistical methods customarily used in the area, and appropriate and relatively comprehensive references are made to emerging trends. The content of the book is purposefully designed to be accessible to readers with basic quantitative backgrounds, while providing an in-depth coverage of relatively complex statistical issues. The book will make a very useful reference for researchers in the pharmaceutical industry, academia, and research institutions involved with HEOR studies. The targeted readers may include statisticians, data scientists, epidemiologists, outcomes researchers, health economists, and healthcare policy and decision-makers.
With ever-rising healthcare costs, evidence generation through Health Economics and Outcomes Research (HEOR) plays an increasingly important role in decision-making about the allocation of resources. Accordingly, it is now customary for health technology assessment and reimbursement agencies to request for HEOR evidence, in addition to data from clinical trials, to inform decisions about patient access to new treatment options. While there is a great deal of literature on HEOR, there is a need for a volume that presents a coherent and unified review of the major issues that arise in application, especially from a statistical perspective. Statistical Topics in Health Economics and Outcomes Research fulfils that need by presenting an overview of the key analytical issues and best practice. Special attention is paid to key assumptions and other salient features of statistical methods customarily used in the area, and appropriate and relatively comprehensive references are made to emerging trends. The content of the book is purposefully designed to be accessible to readers with basic quantitative backgrounds, while providing an in-depth coverage of relatively complex statistical issues. The book will make a very useful reference for researchers in the pharmaceutical industry, academia, and research institutions involved with HEOR studies. The targeted readers may include statisticians, data scientists, epidemiologists, outcomes researchers, health economists, and healthcare policy and decision-makers.
Advancing the development, validation, and use of patient-reported outcome (PRO) measures, Patient-Reported Outcomes: Measurement, Implementation and Interpretation helps readers develop and enrich their understanding of PRO methodology, particularly from a quantitative perspective. Designed for biopharmaceutical researchers and others in the health sciences community, it provides an up-to-date volume on conceptual and analytical issues of PRO measures. The book discusses key concepts relating to the measurement, implementation, and interpretation of PRO measures. It covers both introductory and advanced psychometric and biostatistical methods for constructing and analyzing PRO measures. The authors include many relevant real-life applications based on their extensive first-hand experiences in the pharmaceutical industry. They implement a wealth of simulated datasets to illustrate concepts and heighten understanding based on practical scenarios. For readers interested in conducting statistical analyses of PRO measures and delving more deeply into the analytic details, most chapters contain SAS code and output that illustrate the methodology. Along with providing numerous references, the book highlights current regulatory guidelines.
Advancing the development, validation, and use of patient-reported outcome (PRO) measures, Patient-Reported Outcomes: Measurement, Implementation and Interpretation helps readers develop and enrich their understanding of PRO methodology, particularly from a quantitative perspective. Designed for biopharmaceutical researchers and others in the health sciences community, it provides an up-to-date volume on conceptual and analytical issues of PRO measures. The book discusses key concepts relating to the measurement, implementation, and interpretation of PRO measures. It covers both introductory and advanced psychometric and biostatistical methods for constructing and analyzing PRO measures. The authors include many relevant real-life applications based on their extensive first-hand experiences in the pharmaceutical industry. They implement a wealth of simulated datasets to illustrate concepts and heighten understanding based on practical scenarios. For readers interested in conducting statistical analyses of PRO measures and delving more deeply into the analytic details, most chapters contain SAS code and output that illustrate the methodology. Along with providing numerous references, the book highlights current regulatory guidelines.
Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are relevant to a wide variety of applications, including medical imaging, cancer research, epidemiology, and bioinformatics. Statistical Evaluation of Diagnostic Performance: Topics in ROC Analysis covers areas including monotone-transformation techniques in parametric ROC analysis, ROC methods for combined and pooled biomarkers, Bayesian hierarchical transformation models, sequential designs and inferences in the ROC setting, predictive modeling, multireader ROC analysis, and free-response ROC (FROC) methodology. The book is suitable for graduate-level students and researchers in statistics, biostatistics, epidemiology, public health, biomedical engineering, radiology, medical imaging, biomedical informatics, and other closely related fields. Additionally, clinical researchers and practicing statisticians in academia, industry, and government could benefit from the presentation of such important and yet frequently overlooked topics.
|
You may like...
|