Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Protein kinase CK2 (formerly casein kinase II or 2) is known to play a critical role in the control of cell growth and cell death and is thus intimately involved in the development of cancer. More specifically, CK2 has been found to be elevated in all cancers examined. While CK2 levels are known to be high in proliferating normal cells, CK2 has also been found to be a potent suppressor of apoptosis and is a link to the cancer cell phenotype, which is characterized by deregulation of both cell proliferation and cell death. Indeed, it would appear that CK2 impacts many of the hallmarks of cancer and it has now gained considerable attention as a potential target for cancer therapy. Protein Kinase CK2 and Cellular Function in Normal and Disease States increases knowledge of the role of CK2 in the development of cellular dysfunction and emphasizes that this protein may serve as a target of drug development for improved cancer therapy. In addition, it is a handy tool that provides cancer researchers, graduate students, and all scientists involved in CK2 research with one main source for the latest advances in CK2 research.
CK2 is a protein serine/threonine kinase which is a highly conserved and ubiquitous protein kinase. It is localized in the cytoplasmic and nuclear compartments, which accords with its multiple functional activities in the cell. Pertinent to this is also the recognition that a large number of putative substrates for this kinase have been identified in various compartments of the cell. New evidence from several laboratories has further reinforced the involvement of CK2 in signal transduction related to many cellular functions, thus underscoring the significance of its functional role in normal and abnormal cell growth and proliferation. This volume provides an overview of the state of knowledge concerning this intriguing protein kinase. It brings together contributions from leading investigators engaged in research in this field. Key developments during the past three years pertain to the elaboration of the crystal structure and definition of novel functions of the kinase, such as its role as an inhibitor of apoptosis. Additionally, the shuttling of the kinase to various compartments in response to physiological and stress stimuli appears to be a key feature of the functional regulation of its activity in the cell.
It is now generally recognized that protein kinase signaling is involved in virtually every aspect of cell function, including growth and proliferation. The field of protein phosphorylation, including the enzymes involved in this post-translational modification, continues to advance at a fascinating pace. Since the first international meeting on this topic, held in Heidelberg in 1994, several new avenues of CK2 research have emerged despite persistent deficiencies in our understanding of the regulation of its activity. Among the significant new directions are studies related to the structure of the enzyme, especially its crystal structure, as well as an interesting aspect of CK2 function that involves its subunits as binding partners of several other proteins. In addition, new data have been gathered on the role of CK2 in transcription as well as in certain other cellular functions. To address these various aspects of the progress of CK2, a number of key scientists from different parts of the world came together at the second international meeting on `A Molecular and Cellular View of Protein Kinase CK2', held at Villard de Lans near Grenoble on September 24-26, 1997. The meeting was attended by nearly 50 participants and included 28 presentations, which provide a view of the latest progress on protein kinase CK2.
The fused multiply add (FMA) operation is very important in many scientific and engineering applications. It is a key feature of the floating-point unit (FPU), which greatly increases the floating-point performance and accuracy.Many approaches are developed on floating-point fused multiply add unit to decrease its latency.two of these approaches are implemented in the Verilog hardware description language. ModelSim10.0c is a used to compile Verilog codes and to simulate them.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|