Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 102 matches in All Departments
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of Springer Natureâs longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the 20th volume of a continuing series.
This detailed book collects new and updated techniques that will help to improve our understanding of the mechanisms underlying stem cell-derived repair through stem cells of the epidermal and dermal lineages, which have led to the isolation of numerous stem cell-like sub-populations from the epidermis and dermis. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, Skin Stem Cells: Methods and Protocols, Second Edition serves as a valuable assemblage of protocols for researchers both already working in the field and those who now wish to newly embark on studies of skin stem cells.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. With a goal to accelerate advances by timely information exchange, this new book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series is launched. Emerging areas of regenerative medicine and translational aspects of stem cells will be covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the first volume of a continuing series.
This volume examines cell-cell interactions and stem cell renewal, two topics that are now inexorably linked as science strives to understand the stem cell niche and its function. Gathering a number of representative protocols, this detailed collection promises to provide readers with approaches for studying these complimentary aspects of stem cells. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Practical and reliable, Stem Cell Renewal and Cell-Cell Communication: Methods and Protocols will aid researchers in using these methods to advance their own studies.
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
This meticulous volume recognizes the need to translate what has been learned primarily in tissue culture dishes to approaches supporting scale-up studies, not only to large quantities of cells but also to heterogeneous cell constructs. Notable advances are being made in these latter approaches, prompting this collection of a variety of representative protocols that facilitate important modifications and novel approaches to bioreactors in stem cell research, contributed by both established and new investigators in this area. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, Bioreactors in Stem Cell Biology: Methods and Protocols will serve as an ideal guide for scientists seeking to increase our understanding of stem cells and their potential to repair and regenerate tissues and organs.
This practical, hands-on volume examines the use of decellularized tissues and organs as biologically-active scaffolds by providing numerous approaches from experts in the field. While knowledge of how to grow and differentiate cells in culture has dramatically improved over time, the book addresses the challenges of how to instruct particular cells of interest to recognize and respond to their environment so as to proliferate, differentiate, and function for restoration of original tissue and organ form and function. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and easy to use, Decellularized Scaffolds and Organogenesis: Methods and Protocols share novel approaches and insights that will provide new opportunities for those already in the field or moving to enter the field.
Considerable advances have taken place since the initial isolation and characterization of human embryonic stem (HES) cells; however, significant challenges remain before their potential for restoration and regeneration processes in patients can be realized. Understanding the diversity amongst HES cell lines and realizing the ability to isolate lines with robust differentiation potential remain difficult. In the Human Embryonic Stem Cells Handbook, experts in the field provide an assortment of protocols that have been used by various laboratories around the world so as to allow both novices and experienced investigators to compare and contrast different approaches to HES cell isolation and characterization with the hope that, from these protocols, researchers might standardize approaches for HES cell biology. Written in the Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and accessible, Human Embryonic Stem Cells Handbook serves as a valuable reference for scientists pursuing this vital field and its enormous potential.
The significant biological subject, the permeability barrier, is incredibly diverse and vital for a vast assortment of crucial functions in the body. In Permeability Barrier: Methods and Protocols, a variety of experienced researchers contribute techniques to study this complex system in its many forms. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, detailed lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Permeability Barrier: Methods and Protocols serves as an ideal guide for all scientists seeking to further our understanding of this vital area of research.
This timely volume explores the impact of autophagy in various human diseases, emphasizing the cell biological aspects and focusing on therapeutic approaches to these diseases. The chapters cover autophagy and its potential applications on diseases ranging from obesity, osteoarthritis, pulmonary fibrosis, and inflammation, through ALS, Parkinson's, retinal degeneration, breast cancer, alcoholic liver disease and more. The final chapters round out the book with a discussion of autophagy in drug discovery and 'bench to bedside'. Chapters are contributed by leading authorities and describe the general concepts of autophagy in health and disease, marrying cell biology and pharmacology and covering: studies derived from preclinical experiments, manufacturing considerations,and regulatory requirements pertaining to drug discovery and manufacturing and production. This volume will be useful for basic scientists as well as already practicing clinicians and advanced graduate students.
Adult Stem Cells, second edition, takes a critical look at issues concerning the developmental or differentiation potential for a variety of tissue types and for specific adult stem cell types. Since the first edition appeared a decade ago, our understanding of adult stem cells, and more specifically tissue-specific adult stem cells, has advanced tremendously. And an increased interest in regenerative medicine and potential stem cell applications has driven a quest for better understanding of stem cell biology. In turn, this has spawned much activity on generation and utilization of more and better reagents to identify and isolate stem cells and stem cell-like subpopulations, and on assays elucidating their developmental or differentiation potential and functional integration with host tissues and organs. In this fully updated new edition, chapters cover topics ranging from signaling pathways maintaining stemness in hematopoietic cells to regeneration after injury and endocrine mechanisms underlying the stem cell theory of aging. Other chapters cover stem cells by organ or system including pituitary, cardiac, epithelial, teeth, lung, ovary, prostate, liver, and many more. Importantly, the authors of the chapters have not only summarized their successes, but have also summarized some of the difficulties that each particular field is still facing with respect to maximizing the utility of stem cells in clinical settings. Collectively, they impart both the excitement and challenges facing stem cell utilization for repair and regeneration making this book essential reading for those involved in stem cell research as well as those involved in clinical assays.
This volume looks at the state-of-the-science in stem cells, discusses the current challenges, and examines the new directions the field is taking. Dr. Turksen, editor-in-chief of the journal "Stem Cell Reviews and Reports," has assembled a volume of internationally-known scientists who cover topics that are both clinically and research-oriented. The contents range from sources of stem cells through their physiological role in health and disease, therapeutic applications in regenerative medicine, and ethics and society. An initial overview and a final summary bookend the contents into a cohesive and invaluable volume.
Given the variety of studies and data that have suggested the existence of heterogeneous populations or subpopulations of stem cells, this detailed volume examines different aspects of stem cell heterogeneity. This goes against the long-held tenet that stem cells, defined by their capacity for self-renewal and lineage development, comprised a homogenous population, thus providing the reader with a new avenue of exploration into the complex world of stem cell study. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Stem Cell Heterogeneity: Methods and Protocols serves as an ideal guide for investigators exploring this important area of research.
This timely volume explores the use of CRISPR-Cas9 for genome editing, presenting cutting-edge techniques and their applications in treatment of disease. The chapters describe latest methods such as use of targetable nucleases, investigation of the non-coding genome, mouse genome editing, increasing of knock-in efficiency in mouse zygotes, and generation of reporter stem cells; the text contextualizes these methods in treatment of cardiovascular disease, diabetes mellitus, retinitis pigmentosa, and others. The final chapters round out the book with a discussion of controversies and future directions. Genome Editing is an essential, of-the-moment contribution to this rapidly growing field. Drawing from a wealth of international perspectives, it presents novel techniques and applications for the engineering of the human genome. This book is essential reading for all clinicians and researchers in stem cells, regenerative medicine, genomics, biochemical and biomedical engineering- especially those interested in learning more about genome editing and applying it in a targeted, specific way.
Now in two volumes, this completely updated and expanded edition of Embryonic Stem Cells: Methods and Protocols provides a diverse collection of readily reproducible cellular and molecular protocols for the manipulation of nonhuman embryonic stem cells. Volume two, Embryonic Stem Cell Protocols: Differentiation Models, Second Edition, covers state-of-the-art methods for deriving many types of differentiating cells from ES cells. The first volume, Embryonic Stem Cell Protocols: Isolation and Characterization, Second Edition, provides a diverse collection of readily reproducible cellular and molecular protocols for the isolation, maintenance, and characterization of embryonic stem cells. Together, the two volumes illuminate for both novices and experts our current understanding of the biology of embryonic stem cells and their utility in normal tissue homeostasis and regenerative medicine applications.
This volume collects a series of protocols describing the kinds of infrastructures, training, and standard operating procedures currently available to actualize the potential of stem cells for regenerative therapies. Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations pulls together key GMP techniques from laboratories around the world. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Inclusive and authoritative, Stem Cells and Good Manufacturing Practices: Methods, Protocols, and Regulations will be an invaluable resource to both basic and clinical practitioners in stem cell biology.
"Biomimetics and Stem Cells: Methods and Protocols" collects a series of approaches to demonstrate the role and value of biomimetics for the better understanding of stem cell behavior and the acceleration of their application in regenerative medicine. Recent advances in tissue engineering are enabling scientists to instruct stem cells toward differentiating into the right phenotypes, in the right place and at the right time. Given these advances, biomimetic environments are being designed to recapitulate, in vitro, the combinations of factors known to guide tissue development and regeneration in vivo and thereby help unlock the full potential of the stem cells. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Practical and essential, "Biomimetics and Stem Cells: Methods and Protocols" focuses on the use of biomimetic systems for stem cells in order to aid in moving this vital field of study forward."
Studies on stem cells have been attracting intense scientific and p- lic attention, not only because of controversies surrounding the use of embryonic stem cells but also because of very provocative data that have been emerging on adult stem cells. Much of the public attention and debate has been focused on the possibility that adult stem cells may be used as a substitute for human embryonic stem cells or as a justification for stopping work on them. This has somewhat dim- ished attention on very heated scientific debates that take us to the very heart of how the concept of stem cells is perceived. To this author, the latter debates have not been unlike certain philosophical debates of the last century. Since the seminal studies of Till and McCulloch in the 1960s, the popular paradigm on adult stem cells has been that lineage-restricted stem cells are derived from pluripotent stem cells very early during development. To many, and consistent with much data, the restriction to particular lineages was considered absolute. In other words, there was a sense of determinism in the stem quality of particular stem cells: once they were allocated, they were programmed to specific roles in a given tissue. Furthermore, some adult tissues were considered devoid of detectable stem cell presence or activity.
During the last decade, an increased interest in somatic stem cells has led to a flurry of research on one of the most accessible tissues of the body: skin. Much effort has focused on such topics as understanding the heterogeneity of stem cell pools within the epidermis and dermis, and their comparative utility in regenerative medicine applications. In Skin Stem Cells: Methods and Protocols, expert researchers in the field detail many of the methods which are now commonly used to study skin stem cells. These include methods and techniques for the isolation, maintenance and characterization of stem cell populations from skin. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Skin Stem Cells: Methods and Protocols seeks to aid scientists in the further understanding of these diverse cell types and the translation of their biological potential to the in vivo setting.
This volume will cover a series of reviews on stem cells including adult and embryonic stem cells. Speakers were invited to present these talks during the Stem Cell Symposia in fall of 2010, in Samsun, Turkey. Unique aspect of this volume is that it brings a multidisciplinary aspect of stem cells extracted from a symposium.
Reflecting over three decades of advances, "Epidermal Cells: Methods and Protocols, Third Edition" underscores these advances in our understanding of epidermal biology with updated and entirely new protocols that compliment and extend the earlier edition. The inclusion of protocols useful for both in vitro and in vivo studies reflects many useful developments in the field. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Dependable and easy to follow, "Epidermal Cells: Methods and Protocols, Third Edition" serves researchers working to accelerate the work in this vital field of study.
This fully updated edition explores methods involving sphingosine-1-phosphate (S1P), a bioactive lysophospholipid which has become the focus of much research interest as it has widespread developmental and physio-pathological actions, controlling events within the nervous, reproductive, gastrointestinal, vascular, respiratory, and immune systems, in addition to having a prominent role in cancer, early mammalian embryogenesis, and stem cells. Here, worldwide experts in the S1P field describe in-depth techniques in an array of cell types and with various physiological applications, showcasing the important effects of S1P in development and in physiopathology. As a volume in the Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the relevant materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and timely, Sphingosine-1-Phosphate: Methods and Protocols, Second Edition is another key resource for scientists working in this fast-moving and dynamic field.
This detailed volume presents a series of protocols that are representative of recent developments and improvements in induced pluripotent stem cells (iPS cells) and corresponding human disease models. Reflecting the latest technology for generating induced pluripotent stem cells (iPS cells) and their initial characterization, the book explores techniques invaluable both for studies of disease-specific cell types and for their potential applications in regenerative medicine. Written for the highly successful Methods in Molecular Biology series, chapters include introduction to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Induced Pluripotent Stem Cells and Human Disease: Methods and Protocols serves as a vital guide that is valuable for not only experts but also novices in the stem cell field.
Over time, it has become clear that changes in stem cells do occur during aging, not only in their number but also in their relationship to their microenvironment and their functionality as reflected in changes to their metabolome. Stem Cells and Aging: Methods and Protocols brings together chapters from expert contributors with protocols critical for exploring the biology of stem cell aging, all of which is key for understanding these age-related stem cell changes at a basic biology level and at the level of their impacts for regenerative medicine. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy to use, Stem Cells and Aging: Methods and Protocols serves as an ideal reference to guide investigators toward further valuable answers to the problems of our aging population.
This book covers a wide range of topics that illustrate the various functions of autophagy in stem cells and offers insights on the mechanisms by which autophagy can regulate stem-cell self-renewal and facilitate specific differentiation programs. Stem cells are unique cells present in most multicellular animals and are essential for their survival. They have two unique properties: the ability to self-renew and the ability to differentiate into one or more cell types. These characteristics of stem cells have found immense therapeutic potential in regenerative medicine. Autophagy is a crucial membrane trafficking pathway that is essential for maintaining cellular homeostasis that involves sequestration of non-functional proteins, protein aggregates and damaged organelles in double-membraned vesicles called autophagosomes, which are subsequently targeted to the lysosome for degradation. The primary aim of this book is to provide knowledge of recent developments in our understanding of the role of autophagy in stem cells, including germline stem cells. Autophagy is considered a promising target for many diseases. Significant efforts are being developed to identify specific modulators of autophagy, which will aid in designing combinatorial therapeutic strategies that will allow significant improvements in regenerative medicine. |
You may like...
|