Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be phrased as problems involving the geometric realization of curvature. Curvature decompositions are central to all investigations in this area. The authors present numerous results including the Singer-Thorpe decomposition, the Bokan decomposition, the Nikcevic decomposition, the Tricerri-Vanhecke decomposition, the Gray-Hervella decomposition and the De Smedt decomposition. They then proceed to draw appropriate geometric conclusions from these decompositions.The book organizes, in one coherent volume, the results of research completed by many different investigators over the past 30 years. Complete proofs are given of results that are often only outlined in the original publications. Whereas the original results are usually in the positive definite (Riemannian setting), here the authors extend the results to the pseudo-Riemannian setting and then further, in a complex framework, to para-Hermitian geometry as well. In addition to that, new results are obtained as well, making this an ideal text for anyone wishing to further their knowledge of the science of curvature.
This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading. Math subject classifications : Primary: 53B20 -- (PACS: 02.40.Hw) Secondary: 32Q15, 51F25, 51P05, 53B30, 53C50, 53C80, 58A30, 83F05, 85A04 Table of Contents: Basic Algebraic Notions / Basic Geometrical Notions / Walker Structures / Three-Dimensional Lorentzian Walker Manifolds / Four-Dimensional Walker Manifolds / The Spectral Geometry of the Curvature Tensor / Hermitian Geometry / Special Walker Manifolds
|
You may like...
|