|
|
Showing 1 - 6 of
6 matches in All Departments
This volume presents the state-of-the-art in selected topics across
modern nuclear physics, covering fields of central importance to
research and illustrating their connection to many different areas
of physics. It describes recent progress in the study of superheavy
and exotic nuclei, which is pushing our knowledge to ever heavier
elements and neutron-richer isotopes. Extending nuclear physics to
systems that are many times denser than even the core of an atomic
nucleus, one enters the realm of the physics of neutron stars and
possibly quark stars, a topic that is intensively investigated with
many ground-based and outer-space research missions as well as
numerous theoretical works. By colliding two nuclei at very high
ultra-relativistic energies one can create a fireball of extremely
hot matter, reminiscent of the universe very shortly after the big
bang, leading to a phase of melted hadrons and free quarks and
gluons, the so-called quark-gluon plasma. These studies tie up with
effects of crucial importance in other fields. During the collision
of heavy ions, electric fields of extreme strength are produced,
potentially destabilizing the vacuum of the atomic physics system,
subsequently leading to the decay of the vacuum state and the
emission of positrons. In neutron stars the ultra-dense matter
might support extremely high magnetic fields, far beyond anything
that can be produced in the laboratory, significantly affecting the
stellar properties. At very high densities general relativity
predicts the stellar collapse to a black hole. However, a number of
current theoretical activities, modifying Einstein's theory, point
to possible alternative scenarios, where this collapse might be
avoided. These and related topics are addressed in this book in a
series of highly readable chapters. In addition, the book includes
fundamental analyses of the practicalities involved in transiting
to an electricity supply mainly based on renewable energies,
investigating this scenario less from an engineering and more from
a physics point of view. While the topics comprise a large scope of
activities, the contributions also show an extensive overlap in the
methodology and in the analytical and numerical tools involved in
tackling these diverse research fields that are the forefront of
modern science.
This book explores the role of singularities in general relativity
(GR): The theory predicts that when a sufficient large mass
collapses, no known force is able to stop it until all mass is
concentrated at a point. The question arises, whether an acceptable
physical theory should have a singularity, not even a coordinate
singularity. The appearance of a singularity shows the limitations
of the theory. In GR this limitation is the strong gravitational
force acting near and at a super-massive concentration of a central
mass. First, a historical overview is given, on former attempts to
extend GR (which includes Einstein himself), all with distinct
motivations. It will be shown that the only possible algebraic
extension is to introduce pseudo-complex (pc) coordinates,
otherwise for weak gravitational fields non-physical ghost
solutions appear. Thus, the need to use pc-variables. We will see,
that the theory contains a minimal length, with important
consequences. After that, the pc-GR is formulated and compared to
the former attempts. A new variational principle is introduced,
which requires in the Einstein equations an additional
contribution. Alternatively, the standard variational principle can
be applied, but one has to introduce a constraint with the same
former results. The additional contribution will be associated to
vacuum fluctuation, whose dependence on the radial distance can be
approximately obtained, using semi-classical Quantum Mechanics. The
main point is that pc-GR predicts that mass not only curves the
space but also changes the vacuum structure of the space itself. In
the following chapters, the minimal length will be set to zero, due
to its smallness. Nevertheless, the pc-GR will keep a remnant of
the pc-description, namely that the appearance of a term, which we
may call "dark energy", is inevitable. The first application will
be discussed in chapter 3, namely solutions of central mass
distributions. For a non-rotating massive object it is the
pc-Schwarzschild solution, for a rotating massive object the
pc-Kerr solution and for a charged massive object it will be the
Reissner-Nordstroem solution. This chapter serves to become
familiar on how to resolve problems in pc-GR and on how to
interpret the results. One of the main consequences is, that we can
eliminate the event horizon and thus there will be no black holes.
The huge massive objects in the center of nearly any galaxy and the
so-called galactic black holes are within pc-GR still there, but
with the absence of an event horizon! Chapter 4 gives another
application of the theory, namely the Robertson-Walker solution,
which we use to model different outcomes of the evolution of the
universe. Finally the capability of this theory to predict new
phenomena is illustrated.
This volume presents the state-of-the-art in selected topics across
modern nuclear physics, covering fields of central importance to
research and illustrating their connection to many different areas
of physics. It describes recent progress in the study of superheavy
and exotic nuclei, which is pushing our knowledge to ever heavier
elements and neutron-richer isotopes. Extending nuclear physics to
systems that are many times denser than even the core of an atomic
nucleus, one enters the realm of the physics of neutron stars and
possibly quark stars, a topic that is intensively investigated with
many ground-based and outer-space research missions as well as
numerous theoretical works. By colliding two nuclei at very high
ultra-relativistic energies one can create a fireball of extremely
hot matter, reminiscent of the universe very shortly after the big
bang, leading to a phase of melted hadrons and free quarks and
gluons, the so-called quark-gluon plasma. These studies tie up with
effects of crucial importance in other fields. During the collision
of heavy ions, electric fields of extreme strength are produced,
potentially destabilizing the vacuum of the atomic physics system,
subsequently leading to the decay of the vacuum state and the
emission of positrons. In neutron stars the ultra-dense matter
might support extremely high magnetic fields, far beyond anything
that can be produced in the laboratory, significantly affecting the
stellar properties. At very high densities general relativity
predicts the stellar collapse to a black hole. However, a number of
current theoretical activities, modifying Einstein's theory, point
to possible alternative scenarios, where this collapse might be
avoided. These and related topics are addressed in this book in a
series of highly readable chapters. In addition, the book includes
fundamental analyses of the practicalities involved in transiting
to an electricity supply mainly based on renewable energies,
investigating this scenario less from an engineering and more from
a physics point of view. While the topics comprise a large scope of
activities, the contributions also show an extensive overlap in the
methodology and in the analytical and numerical tools involved in
tackling these diverse research fields that are the forefront of
modern science.
This book explores the role of singularities in general relativity
(GR): The theory predicts that when a sufficient large mass
collapses, no known force is able to stop it until all mass is
concentrated at a point. The question arises, whether an acceptable
physical theory should have a singularity, not even a coordinate
singularity. The appearance of a singularity shows the limitations
of the theory. In GR this limitation is the strong gravitational
force acting near and at a super-massive concentration of a central
mass. First, a historical overview is given, on former attempts to
extend GR (which includes Einstein himself), all with distinct
motivations. It will be shown that the only possible algebraic
extension is to introduce pseudo-complex (pc) coordinates,
otherwise for weak gravitational fields non-physical ghost
solutions appear. Thus, the need to use pc-variables. We will see,
that the theory contains a minimal length, with important
consequences. After that, the pc-GR is formulated and compared to
the former attempts. A new variational principle is introduced,
which requires in the Einstein equations an additional
contribution. Alternatively, the standard variational principle can
be applied, but one has to introduce a constraint with the same
former results. The additional contribution will be associated to
vacuum fluctuation, whose dependence on the radial distance can be
approximately obtained, using semi-classical Quantum Mechanics. The
main point is that pc-GR predicts that mass not only curves the
space but also changes the vacuum structure of the space itself. In
the following chapters, the minimal length will be set to zero, due
to its smallness. Nevertheless, the pc-GR will keep a remnant of
the pc-description, namely that the appearance of a term, which we
may call "dark energy", is inevitable. The first application will
be discussed in chapter 3, namely solutions of central mass
distributions. For a non-rotating massive object it is the
pc-Schwarzschild solution, for a rotating massive object the
pc-Kerr solution and for a charged massive object it will be the
Reissner-Nordstroem solution. This chapter serves to become
familiar on how to resolve problems in pc-GR and on how to
interpret the results. One of the main consequences is, that we can
eliminate the event horizon and thus there will be no black holes.
The huge massive objects in the center of nearly any galaxy and the
so-called galactic black holes are within pc-GR still there, but
with the absence of an event horizon! Chapter 4 gives another
application of the theory, namely the Robertson-Walker solution,
which we use to model different outcomes of the evolution of the
universe. Finally the capability of this theory to predict new
phenomena is illustrated.
Studienarbeit aus dem Jahr 2009 im Fachbereich Jura - Zivilrecht /
Arbeitsrecht, Note: 1,0, Fachhochschule Schmalkalden, Sprache:
Deutsch, Abstract: Arbeitszeugnisse sind eingebettet in das
Rechtssystem Deutschlands und werden dem juristischen Teilbereich
Arbeitsrecht zugeordnet. Das Arbeitsrecht ist der Teilbereich
unseres Rechtssystems, der das fur die Rechtsbeziehungen zwischen
Arbeitgeber und Arbeitnehmer geltende Recht umfasst.
Grundtatbestand ist die abhangige Arbeit. Abhangige Arbeit ist
gegenwartig die dominante Form der Erwerbstatigkeit. In Deutschland
leisten circa 74,5% der Erwerbspersonen eine abhangige Arbeit bzw.
suchen eine solche, dagegen sind nur 25,5% der Erwerbstatigen
Bundesburger selbstandig oder sind als mithelfende
Familienangehorige tatig. Somit bedarf es ei-ner
Leistungsbeurteilung bzw. eines Nachweises in Form eines
Arbeitszeugnisses fur den Grossteil der abhangig Beschaftigten.
Arbeitszeugnisse sind fur Arbeitgeber und Arbeitnehmer
gleichermassen von zentraler Bedeutung. Dem Arbeitnehmer dient es
als Nachweis seiner beruflichen Tatigkeit, da es Aussagen uber den
Werdegang im Unternehmen und die erbrachten Leistungen enthalt.
Mithin ist das Arbeitszeugnis ein wichtiger Bestandteil der
Bewerbungsunterlagen. Auch in der betrieblichen Personalpraxis
nehmen Arbeitszeugnisse eine wichtige Rolle ein, da sie einerseits
als Beurteilung fur ausscheidende Arbeitnehmer erstellt werden und
andererseits als Instrument der betrieblichen Personalrekrutierung
genutzt werden. Die Anspruchsgrundlagen fur die verschiedenen
Personenkreise, die Durchsetzungswege und -Moglichkeiten sind
anhand von Gesetzen geregelt. Der Inhalt von Arbeitszeugnissen ist
gepragt von den Grundsatzen zur Erstellung und der sog.
Zeugnissprache. Der Rahmen fur die formale und die inhaltliche
Ausgestaltung der Arbeitszeugnisse, wird weitgehend durch die
Rechtsprechung der Arbeitsgerichte bestimmt. Aus diesen Grunden
werden Arbeitszeugnisse als burokratisch, genau und typisch deuts
Studienarbeit aus dem Jahr 2010 im Fachbereich BWL - Personal und
Organisation, Note: 1,3, Fachhochschule Schmalkalden, Sprache:
Deutsch, Abstract: Einleitung Nichts ist so spannend wie
Wirtschaft, ausser Fussball. Auch durch einen ent-sprechenden
Umkehrschluss dieses Satzes, trifft die Trivialitat zu, dass weder
im Fussball, noch in der Wirtschaft vorhersehbar ist, was im
nachsten Moment passiert. So kann man den Ball sinnbildlich durch
ein Produkt ersetzen, die gegnerische Mannschaft als Mitbewerber
verstehen, die Fans auf den Tribunen durch Kunden ersetzen und die
Flanke als Kooperationsangebot ansehen. In beiden Bereichen geht es
um das Hervorrufen von Leidenschaft, Kampfgeist, Taktik, Gefuhle
und letztendlich um das Gewinnen. Im Fussball und Wirtschaft ist
die Massgabe des maximalen Erfolgs immer ge-genwartig und bestimmt
den Alltag der Mitarbeiter. Um diesen hohen Anforde-rungen gerecht
zu werden, bedarf es einer gewissen Entschlossenheit und
Zielstrebigkeit jedes Einzelnen. Um ein Maximum an Leistung des
Personals zu erreichen, um Angste, individuelle Schwachen und
Grenzen zu uberwinden, ist Teamgeist gefragt. Spezielles Konnen,
charakterliche Eigenarten und mannschaftliche Geschlossenheit sind
dabei miteinander zu vereinen, um folglich eine Synergie zu
erzeugen. Wie so etwas erreicht werden kann, soll die vorliegende
Arbeit, mit dem Thema: Teambuildung - Was kann man vom Fussball
lernen?," aufzeigen. Hierbei soll der Prozess Teambuilding im
Ganzen und in den einzelnen Bereichen erklart und dabei konkrete
Lerneffekte fur die Wirtschaft aufgezeigt werden. Unter
Teambuilding kann die Intention verstanden werden, Personen mit
bestimmten Fahigkeiten und Kenntnissen zu identifizieren, um diese
mit anderen spezialisierten Personen in einem Team, das eine
definierte Aufgabe losen soll, zu vereinen. Hauptbestandteile der
anzustellenden Begutachtung werden demnach unter anderem sein, der
psychologische Prozess sowie die Teamzusammensetzung als
essentieller Ba
|
|