![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.
"Fault Detection and Isolation: Multi-Vehicle Unmanned System" deals with the design and development of fault detection and isolation algorithms for unmanned vehicles such as spacecraft, aerial drones and other related vehicles. Addressing fault detection and isolation is a key step towards designing autonomous, fault-tolerant cooperative control of networks of unmanned systems. This book proposes a solution based on a geometric approach, and presents new theoretical findings for fault detection and isolation in Markovian jump systems. Also discussed are the effects of large environmental disturbances, as well as communication channels, on unmanned systems. The book proposes novel solutions to difficulties like robustness issues, as well as communication channel anomalies. "Fault Detection and Isolation: Multi-Vehicle Unmanned System" is an ideal book for researchers and engineers working in the fields of fault detection, as well as networks of unmanned vehicles.
This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.
As control systems become more complex and are expected to perform tasks in unknown and extreme environments, they may be subject to various types of faults in their sensors, actuators or other components. It is crucial to be able to diagnose the occurrence of faults and to repair them in order to maintain, guarantee, and improve the overall safety, reliability, and performance of the systems. This book addresses the design challenges of developing and implementing novel integrated fault diagnosis and control technologies for complex linear systems. Integrated Fault Diagnosis and Control Design of Linear Complex Systems considers linear time-invariant (LTI) systems under both time- and event-triggered frameworks. The book initially develops novel methodologies for the problem of integrated fault diagnosis and control of LTI systems to address current design challenges. The results obtained are then extended to a number of complex linear systems, specifically to Markovian jump systems as well as to cooperative multi-agent systems.
"Fault Detection and Isolation: Multi-Vehicle Unmanned System" deals with the design and development of fault detection and isolation algorithms for unmanned vehicles such as spacecraft, aerial drones and other related vehicles. Addressing fault detection and isolation is a key step towards designing autonomous, fault-tolerant cooperative control of networks of unmanned systems. This book proposes a solution based on a geometric approach, and presents new theoretical findings for fault detection and isolation in Markovian jump systems. Also discussed are the effects of large environmental disturbances, as well as communication channels, on unmanned systems. The book proposes novel solutions to difficulties like robustness issues, as well as communication channel anomalies. "Fault Detection and Isolation: Multi-Vehicle Unmanned System" is an ideal book for researchers and engineers working in the fields of fault detection, as well as networks of unmanned vehicles.
|
![]() ![]() You may like...
Bardaisan of Edessa: A Reassessment of…
Ilaria Ramelli
Hardcover
Perfectionism, Health, and Well-Being
Fuschia M Sirois, Danielle S. Molnar
Hardcover
R3,703
Discovery Miles 37 030
Media Studies: Volume 3 - Media Content…
Pieter J. Fourie
Paperback
![]()
|