|
|
Showing 1 - 2 of
2 matches in All Departments
Thisisthefirstvolumeinthe CerelJral
Cortexseriesdevotedtomathematicalmodels ofthecortex.
Itwasmotivatedbytherealizationthatcomputationalmodelsof
individualneuronsandensemblesofneuronsareincreasinglyusedinresearchon
corticalorganizationandfunction.
Thisis,inpart,becauseofthenowubiquitous
presenceofpowerfulandaffordablecomputers.
Suitablemachineswereformerly
rareinresearchlaboratoriesandrequiredsubstantialprogrammingexpertisetobe
usedinconstructingandusingneuronalmodels. However,computersarenow
routinelyusedinallareasofneurobiologyandanumberofsoftwarepackagesallow
scientistswithminimalcomputerscienceandmathematicalbackgroundstocon-
structseriousneuronalmodels.
Asecondfactorleadingtotheproliferationof
modelingstudiesisthedevelopmentoftechnologiesthatallowthekindsofdata
collectionneededtodeveloprealisticmodelsofcorticalneurons.
Characterization
ofthekineticsofvoltage-andligand-gatedchannelsandreceptorshadbeenlim-
itedtorelativelylargeneurons.
However,therapiddevelopmentofsliceprepara-
tions,patch-clampmethods,andimagingmethodsbasedonvoltage-sensitivedyes
andintracellularcalciumindicatorshasresultedinasignificantdatabaseonthe
biophysicalfeaturesofcorticalneurons.
Thescopeofmodelingapproachestocorticalneuronsandfunctionsiswide
anditseemednecessarytolimitthepurviewofthevolume.
Thefocusisonattempts
tounderstandthepropertiesofindividualcorticalneuronsandneuronalcircuitry
throughmodelsthatincorporatesignificantfeaturesofcellularmorphologyand
physiology.
Noattemptwasmadetoincludemodelingapproachestounderstanding
corticaldevelopmentandplasticity.
Thus,workdealingwiththedevelopmentof
oculardominancecolumnsandtheorientationselectivityofneuronsinvisualcortex
isnotconsidered.
Similarly,modelsdealingwiththecellularmechanismsunderlying
long-termplasticityandwithapproachestolearningandmemorybasedonmodifica-
tionofHebbiansynapsesarenotconsidered.
Relativelyabstractattemptstounder-
standhigherlevelandcognitiveprocessesbasedonneuralnetsrepresentasecond,
majorareaofworkthatisnottreated. Modelsofcognitiveprocessesbasedon
dynamicalsystemsmethodsinwhichnoattemptismadetoincludethebiophysical
featuresofindividualneuronsarealsonotconsidered. vii viii
Thetenmajorchaptersfallintothreegroups. Thefirstgroupdealswith
compartmentalmodelsofindividualcorticalneurons.
LyleBorg-Grahamprovides PREFACE
anintroductiontothemethodsinvolvedinconstructingcompartmentalmodels
andthenreviewstheexistingmodelsofhippocampalpyramidalcells.
Becauseof
theeffectivenessofhippocampalslicepreparations,theseneuronshavewell-ehar-
acterizedbiophysicalproperties.
Thischapterillustrateshowcompartmentalmod-
elscanbeusedtosynthesizeexperimentaldataandprovideanintegrativeviewof
thepropertiesofindividualneurons.
PaulRhodescontinuesthethemebyfocusing
ontheroleofvoltage-gatedchannelslocatedonthedendritesofcorticalneurons.
Thisisanareainwhichtechnologicaladvancesinthevisualizationofneuronsin
slicepreparationsbasedoninfraredmicroscopyhavegreatlyexpandedtheinfor-
mationavailableondendriticfunctioninjustafewyears.
Thechapterbothreviews
theexperimentaldataonactivedendriticconductancesandemphasizestheirpo-
tentialfunctionalroles.
Thesecondgroupofchaptersdealwiththegenerationofreceptivefield
propertiesofneuronswithinvisualcortex.
Theyaddressissuesstemmingfromthe
originalattempttounderstandhowthereceptivefieldpropertiesofneuronsincat
andmonkeyprimaryvisualcortexaregeneratedbyinteractionsbetweengenicu-
lateafferentsandcorticalneurons.
ThechapterbyFlorentinWorgotterevaluates
modelsthathavebeenusedtoanalyzethegenerationofreceptivefieldproperties.
RodneyDouglasandhiscolleaguesaddressaspecificsetofissuesdealingwiththe
roleofintracorticalexcitationmediatedbypyramidalcellcollaterals.
Animportant
featureofthischapterisitsrelationtoattempttoconstructfabricatedcircuitsthat
duplicatethefunctionsofcorticalcircuits.
ThechapterbyPhilipUlinskifocuseson
thegenerationofmotion-selectivepropertiesincorticalneurons.
Itseekstoidenti-
tycellularmechanismsusedbyneuronsthatrespondpreferentiallytovisualstimuli
movingwithparticularspeedsordirections.
MatteoCarandiniandhiscolleagues
discussthefeatureofcorticalneurons,knownasgaincontrol,thatallowsneurons
torespondeffectivelytovisualstimulibypoolinginformationacrosspopulationsof
corticalneurons.
ThechapterbyHughWilsondealswiththereceptivefieldproper-
tiesofextrastriateareasandintroducesnewworkanalyzingface-selectiveneurons.
Thefinalsetofchaptersconsidermodelsofensemblesofthalamicandcortical
neurons. ThechapterbyWilliamLyttonandElizabethThomasusesthetheoryof
dynamicalsystemstoanalyzethetemporalrelationshipsbetweenthalamicand
corticalneurons.
Animportantfeatureoftheinteractionbetweenthalamusand
cortexisthepresenceofoscillationsthatdependinpartuponthevoltage-gated
conductancespresentonindividualneuronsandinpartonthestructureofthe
overallnetwork.
PaulBushcontinuesthisemphasisonoscillationsbydiscussinga
modelthatdealswiththegenerationofsynchronizedoscillationsinvisualcortex.
Oscillationsofthiskindhaveattractedsubstantialattentioninrecentyearsbecause
oftheirpotentialroleincognitiveprocesses.
Thelastchapter,byMichaelHasselmo
andChristianeLinster,reviewstheirworkonmodelingpiriformcortex,emphasiz-
ingtheroleofcholinergicmechanismsinmodulatingtheactivityofcorticalneu-
rons. Anattempthasbeenmadethroughouttomakethevolumeaccessibleto
readerswithminimalmathematicalbackgrounds. Thevolumethusbeginswitha
shorthistoryofmodelsofcorticalneuronsandcircuitrythatintroducestheprinci-
palmodelingstyles.
ThechaptersbyWorgotterandUlinskicontainmoreextensive ix
introductionstosomeofthemodelingmethodsthathavebeenusedtostudyvisual
cortex,andthemathematicallychallengedreaderwillfindthatthechapterby
PREFACE
LyttonandThomascontainsareadableintroductiontotheuseofdynamical
systemstheoryinneurobiology. PhilipS. Ulinski EdwardG. Jones
Chicago and Davis Contents Chapter 1
ModelingCorticalCircuitry:AHistoryandProspectus PhilipS. Ulinski 1.
Introduction "...1 2. LorentedeNothroughDynamicalSystemsModels...2
2. 1. LorentedeNo...2 2. 2. CellAssembliesandNeuralNets...3 2. 3.
DynamicSystemsModels...8 3.
HodgkinandHuxleythroughNetworkModels...11 3. 1.
HodgkinandHuxley...11 3. 2. WilfridRall...11 3. 3.
SoftwarePackages...13 3. 4. RealisticModelsofCorticalNetworks...14
4. Prospectus...14 5. References...15 Chapter 2
InterpretationsofDataandMechanismsforHippocampalPyramidal
CellModels LyleJ Borg-Graham 1. Introduction...19 1. 1.
NeuronModelEvolution-followingElectrophysiology...19 1. 2.
NeuronModelEvaluation-followingtheParameters...21 1. 3.
WhyHippocampus? 21 1. 4. OrganizationofThisChapter...22 xi xii 2.
TheDatabaseforSingle-NeuronModels...23 2. 1.
VoltageClampversusCurrentClamp...23 CONTENTS 2. 2.
Single-ChannelversusMacroscopicCurrents...24 2. 3.
TypeofPreparation...24 2. 4.
KineticandPharmacologicalDissection...25 2. 5.
TemperatureDependence...26 2. 6. AgeDependence...27 2. 7.
HippocampalSubfieldDependence...27 2. 8.
DifferencesinFiringPropertiesbetweenSharpversusPatch
Recordings...28 2. 9. TheMeasuredVoltage...
Thisisthefirstvolumeinthe CerelJral
Cortexseriesdevotedtomathematicalmodels ofthecortex.
Itwasmotivatedbytherealizationthatcomputationalmodelsof
individualneuronsandensemblesofneuronsareincreasinglyusedinresearchon
corticalorganizationandfunction.
Thisis,inpart,becauseofthenowubiquitous
presenceofpowerfulandaffordablecomputers.
Suitablemachineswereformerly
rareinresearchlaboratoriesandrequiredsubstantialprogrammingexpertisetobe
usedinconstructingandusingneuronalmodels. However,computersarenow
routinelyusedinallareasofneurobiologyandanumberofsoftwarepackagesallow
scientistswithminimalcomputerscienceandmathematicalbackgroundstocon-
structseriousneuronalmodels.
Asecondfactorleadingtotheproliferationof
modelingstudiesisthedevelopmentoftechnologiesthatallowthekindsofdata
collectionneededtodeveloprealisticmodelsofcorticalneurons.
Characterization
ofthekineticsofvoltage-andligand-gatedchannelsandreceptorshadbeenlim-
itedtorelativelylargeneurons.
However,therapiddevelopmentofsliceprepara-
tions,patch-clampmethods,andimagingmethodsbasedonvoltage-sensitivedyes
andintracellularcalciumindicatorshasresultedinasignificantdatabaseonthe
biophysicalfeaturesofcorticalneurons.
Thescopeofmodelingapproachestocorticalneuronsandfunctionsiswide
anditseemednecessarytolimitthepurviewofthevolume.
Thefocusisonattempts
tounderstandthepropertiesofindividualcorticalneuronsandneuronalcircuitry
throughmodelsthatincorporatesignificantfeaturesofcellularmorphologyand
physiology.
Noattemptwasmadetoincludemodelingapproachestounderstanding
corticaldevelopmentandplasticity.
Thus,workdealingwiththedevelopmentof
oculardominancecolumnsandtheorientationselectivityofneuronsinvisualcortex
isnotconsidered.
Similarly,modelsdealingwiththecellularmechanismsunderlying
long-termplasticityandwithapproachestolearningandmemorybasedonmodifica-
tionofHebbiansynapsesarenotconsidered.
Relativelyabstractattemptstounder-
standhigherlevelandcognitiveprocessesbasedonneuralnetsrepresentasecond,
majorareaofworkthatisnottreated. Modelsofcognitiveprocessesbasedon
dynamicalsystemsmethodsinwhichnoattemptismadetoincludethebiophysical
featuresofindividualneuronsarealsonotconsidered. vii viii
Thetenmajorchaptersfallintothreegroups. Thefirstgroupdealswith
compartmentalmodelsofindividualcorticalneurons.
LyleBorg-Grahamprovides PREFACE
anintroductiontothemethodsinvolvedinconstructingcompartmentalmodels
andthenreviewstheexistingmodelsofhippocampalpyramidalcells.
Becauseof
theeffectivenessofhippocampalslicepreparations,theseneuronshavewell-ehar-
acterizedbiophysicalproperties.
Thischapterillustrateshowcompartmentalmod-
elscanbeusedtosynthesizeexperimentaldataandprovideanintegrativeviewof
thepropertiesofindividualneurons.
PaulRhodescontinuesthethemebyfocusing
ontheroleofvoltage-gatedchannelslocatedonthedendritesofcorticalneurons.
Thisisanareainwhichtechnologicaladvancesinthevisualizationofneuronsin
slicepreparationsbasedoninfraredmicroscopyhavegreatlyexpandedtheinfor-
mationavailableondendriticfunctioninjustafewyears.
Thechapterbothreviews
theexperimentaldataonactivedendriticconductancesandemphasizestheirpo-
tentialfunctionalroles.
Thesecondgroupofchaptersdealwiththegenerationofreceptivefield
propertiesofneuronswithinvisualcortex.
Theyaddressissuesstemmingfromthe
originalattempttounderstandhowthereceptivefieldpropertiesofneuronsincat
andmonkeyprimaryvisualcortexaregeneratedbyinteractionsbetweengenicu-
lateafferentsandcorticalneurons.
ThechapterbyFlorentinWorgotterevaluates
modelsthathavebeenusedtoanalyzethegenerationofreceptivefieldproperties.
RodneyDouglasandhiscolleaguesaddressaspecificsetofissuesdealingwiththe
roleofintracorticalexcitationmediatedbypyramidalcellcollaterals.
Animportant
featureofthischapterisitsrelationtoattempttoconstructfabricatedcircuitsthat
duplicatethefunctionsofcorticalcircuits.
ThechapterbyPhilipUlinskifocuseson
thegenerationofmotion-selectivepropertiesincorticalneurons.
Itseekstoidenti-
tycellularmechanismsusedbyneuronsthatrespondpreferentiallytovisualstimuli
movingwithparticularspeedsordirections.
MatteoCarandiniandhiscolleagues
discussthefeatureofcorticalneurons,knownasgaincontrol,thatallowsneurons
torespondeffectivelytovisualstimulibypoolinginformationacrosspopulationsof
corticalneurons.
ThechapterbyHughWilsondealswiththereceptivefieldproper-
tiesofextrastriateareasandintroducesnewworkanalyzingface-selectiveneurons.
Thefinalsetofchaptersconsidermodelsofensemblesofthalamicandcortical
neurons. ThechapterbyWilliamLyttonandElizabethThomasusesthetheoryof
dynamicalsystemstoanalyzethetemporalrelationshipsbetweenthalamicand
corticalneurons.
Animportantfeatureoftheinteractionbetweenthalamusand
cortexisthepresenceofoscillationsthatdependinpartuponthevoltage-gated
conductancespresentonindividualneuronsandinpartonthestructureofthe
overallnetwork.
PaulBushcontinuesthisemphasisonoscillationsbydiscussinga
modelthatdealswiththegenerationofsynchronizedoscillationsinvisualcortex.
Oscillationsofthiskindhaveattractedsubstantialattentioninrecentyearsbecause
oftheirpotentialroleincognitiveprocesses.
Thelastchapter,byMichaelHasselmo
andChristianeLinster,reviewstheirworkonmodelingpiriformcortex,emphasiz-
ingtheroleofcholinergicmechanismsinmodulatingtheactivityofcorticalneu-
rons. Anattempthasbeenmadethroughouttomakethevolumeaccessibleto
readerswithminimalmathematicalbackgrounds. Thevolumethusbeginswitha
shorthistoryofmodelsofcorticalneuronsandcircuitrythatintroducestheprinci-
palmodelingstyles.
ThechaptersbyWorgotterandUlinskicontainmoreextensive ix
introductionstosomeofthemodelingmethodsthathavebeenusedtostudyvisual
cortex,andthemathematicallychallengedreaderwillfindthatthechapterby
PREFACE
LyttonandThomascontainsareadableintroductiontotheuseofdynamical
systemstheoryinneurobiology. PhilipS. Ulinski EdwardG. Jones
Chicago and Davis Contents Chapter 1
ModelingCorticalCircuitry:AHistoryandProspectus PhilipS. Ulinski 1.
Introduction "...1 2. LorentedeNothroughDynamicalSystemsModels...2
2. 1. LorentedeNo...2 2. 2. CellAssembliesandNeuralNets...3 2. 3.
DynamicSystemsModels...8 3.
HodgkinandHuxleythroughNetworkModels...11 3. 1.
HodgkinandHuxley...11 3. 2. WilfridRall...11 3. 3.
SoftwarePackages...13 3. 4. RealisticModelsofCorticalNetworks...14
4. Prospectus...14 5. References...15 Chapter 2
InterpretationsofDataandMechanismsforHippocampalPyramidal
CellModels LyleJ Borg-Graham 1. Introduction...19 1. 1.
NeuronModelEvolution-followingElectrophysiology...19 1. 2.
NeuronModelEvaluation-followingtheParameters...21 1. 3.
WhyHippocampus? 21 1. 4. OrganizationofThisChapter...22 xi xii 2.
TheDatabaseforSingle-NeuronModels...23 2. 1.
VoltageClampversusCurrentClamp...23 CONTENTS 2. 2.
Single-ChannelversusMacroscopicCurrents...24 2. 3.
TypeofPreparation...24 2. 4.
KineticandPharmacologicalDissection...25 2. 5.
TemperatureDependence...26 2. 6. AgeDependence...27 2. 7.
HippocampalSubfieldDependence...27 2. 8.
DifferencesinFiringPropertiesbetweenSharpversusPatch
Recordings...28 2. 9. TheMeasuredVoltage...
|
You may like...
Moonfall
Halle Berry, Patrick Wilson, …
Blu-ray disc
R614
R301
Discovery Miles 3 010
Midnights
Taylor Swift
CD
R505
R443
Discovery Miles 4 430
|