0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Poly-SiGe for MEMS-above-CMOS Sensors (Hardcover, 2014 ed.): Pilar Gonzalez Ruiz, Kristin De Meyer, Ann Witvrouw Poly-SiGe for MEMS-above-CMOS Sensors (Hardcover, 2014 ed.)
Pilar Gonzalez Ruiz, Kristin De Meyer, Ann Witvrouw
R3,875 R3,586 Discovery Miles 35 860 Save R289 (7%) Ships in 12 - 19 working days

Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence of deposition conditions, germanium content and doping concentration on the electrical and piezoresistive properties of boron-doped poly-SiGe. The development of a CMOS-compatible process flow, with special attention to the sealing method, is also described. Piezoresistive pressure sensors with different areas and piezoresistor designs were fabricated and tested. Together with the piezoresistive pressure sensors, also functional capacitive pressure sensors were successfully fabricated on the same wafer, proving the versatility of poly-SiGe for MEMS sensor applications. Finally, a detailed analysis of the MEMS processing impact on the underlying CMOS circuit is also presented.

Poly-SiGe for MEMS-above-CMOS Sensors (Paperback, Softcover reprint of the original 1st ed. 2014): Pilar Gonzalez Ruiz, Kristin... Poly-SiGe for MEMS-above-CMOS Sensors (Paperback, Softcover reprint of the original 1st ed. 2014)
Pilar Gonzalez Ruiz, Kristin De Meyer, Ann Witvrouw
R3,618 Discovery Miles 36 180 Ships in 10 - 15 working days

Polycrystalline SiGe has emerged as a promising MEMS (Microelectromechanical Systems) structural material since it provides the desired mechanical properties at lower temperatures compared to poly-Si, allowing the direct post-processing on top of CMOS. This CMOS-MEMS monolithic integration can lead to more compact MEMS with improved performance. The potential of poly-SiGe for MEMS above-aluminum-backend CMOS integration has already been demonstrated. However, aggressive interconnect scaling has led to the replacement of the traditional aluminum metallization by copper (Cu) metallization, due to its lower resistivity and improved reliability. Poly-SiGe for MEMS-above-CMOS sensors demonstrates the compatibility of poly-SiGe with post-processing above the advanced CMOS technology nodes through the successful fabrication of an integrated poly-SiGe piezoresistive pressure sensor, directly fabricated above 0.13 m Cu-backend CMOS. Furthermore, this book presents the first detailed investigation on the influence of deposition conditions, germanium content and doping concentration on the electrical and piezoresistive properties of boron-doped poly-SiGe. The development of a CMOS-compatible process flow, with special attention to the sealing method, is also described. Piezoresistive pressure sensors with different areas and piezoresistor designs were fabricated and tested. Together with the piezoresistive pressure sensors, also functional capacitive pressure sensors were successfully fabricated on the same wafer, proving the versatility of poly-SiGe for MEMS sensor applications. Finally, a detailed analysis of the MEMS processing impact on the underlying CMOS circuit is also presented.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Zulfies Perfume Inspired by Mariah Carey…
R250 R99 Discovery Miles 990
MicroFinTech - Expanding Financial…
Roberto Moro Visconti Hardcover R3,972 Discovery Miles 39 720
A Political Economy of Banking…
Damir Odak Hardcover R2,764 Discovery Miles 27 640
Regulation of Cryptocurrencies and…
Rosario Girasa Hardcover R4,333 Discovery Miles 43 330
Sustainability in Bank and Corporate…
Magdalena Ziolo, Beata Zofia Filipiak, … Hardcover R4,672 Discovery Miles 46 720
Bridging Relational and NoSQL Databases
Drazena Gaspar, Ivica Coric Hardcover R5,240 Discovery Miles 52 400
Handbook of Multimedia Information…
Amit Kumar Singh, Anand Mohan Hardcover R7,190 Discovery Miles 71 900
Visual Content Indexing and Retrieval…
Jenny Benois-Pineau, Patrick Le Callet Hardcover R3,666 Discovery Miles 36 660
Smart Cities - Development and…
Zaigham Mahmood Hardcover R4,334 Discovery Miles 43 340
Quantum Physics Basic Principles…
Loew Kaufmann Hardcover R899 R772 Discovery Miles 7 720

 

Partners