Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This title presents the state-of-the-art in molecular engineering
and new developments in the fields of materials science, membrane
biophysics, interfaces, sensing, and intermolecular interactions
including molecular recognition.
This is the first book on interfacial rheology. It aims to describe both its history as well as the current, most frequently used experimental techniques for studying dilational and shear rheology of layers at liquid/gas and liquid/liquid interfaces. The book opens with a chapter on the fundamentals of interfacial rheology. All (16) contributions include the theoretical basis for the presented methodologies, and experimental examples are given.
This book describes in detail the scientific philosophy of the formation and stabilization-destabilization of foams. It presents all hierarchical steps of a foam, starting from the properties of adsorption layers formed by foaming agents, discussing the properties of foam films as the building blocks of a foam, and then describing details of real foams, including many fields of application. The information presented in the book is useful to people working on the formulation of foams or attempting to avoid or destruct foams in unwanted situations.
Food Colloids: Interactions, Microstructure and Processing describes the principles and practice underlying the formulation of food emulsions, dispersions, gels, and foams. Emphasis is on understanding how the functional properties of biopolymers and surfactants determine the texture and shelf-life of multiphase food materials. This book provides essential new findings by experts in the field on specific topics including: the interfacial rheological properties of proteins; the use of microscopy and image analysis to probe structure and phase transitions; the control of colloidal stability during thermal and mechanical processing; the interactions of proteins with polysaccharides and emulsifiers; the incorporation of neutraceuticals into food colloids; and the consumer perception of taste and texture. Food Colloids: Interactions, Microstructure and Processing provides a link between current research on the fundamental physical chemistry of colloidal systems and the requirements of the food technologist to use modern colloid science in new product formulation. It is suitable for postgraduates and researchers, both in industry and academia.
This book describes the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. It presents practical experimental details as well as the underlying theoretical bases. In addition, the book covers a number of applications based on drops and bubbles, such as rising bubbles and the complex process of flotation. It also offers a discussion on wetting, characterized by the dynamics of advancing contact angles.
Food Colloids: Fundamentals of Formulation describes the physico-chemical principles underlying the formulation of multi-component, multi-phase food systems. Emphasis is placed on the interfacial properties of proteins and the role of protein interactions in determining the properties of emulsions, dispersions, gels and foams. The coverage includes authoritative overviews of conceptual issues as well as descriptions of new experimental techniques and recent food colloids research findings. Specific topics include atomic force microscopy, aggregation phenomena, coalescence mechanisms, crystallization processes, surface rheology, protein-lipid interactions and mixed biopolymer systems. This book provides essential new material for those active in the field and is suitable for postgraduates and researchers, both in industry and academia.
This is the first book on interfacial rheology. It aims to describe both its history as well as the current, most frequently used experimental techniques for studying dilational and shear rheology of layers at liquid/gas and liquid/liquid interfaces. The book opens with a chapter on the fundamentals of interfacial rheology. All (16) contributions include the theoretical basis for the presented methodologies, and experimental examples are given.
The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting peculiarities, such as the phenomena of super-spreading and super-hydrophobicity. They discuss specific solid surfaces-for example, reactions and wetting of liquid metals at high temperatures-and the interaction between nano-bubbles at solid surface and nano-particles at liquid interfaces. The book also includes a chapter on electro-wetting. Given the range of topics covered in this volume, the state-of-art content is useful to readers looking for an introductory overview as well as those looking for in-depth exploration of material related to the interaction of fluids with solid surfaces. It is a valuable contribution to the field of characterization of solid surfaces and can be used as a working tool or to stimulate further study for researchers and students.
Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthesis of nanostructured materials of well-defined size and function; (2) Analytical methods and tools for control and characterization of synthesized nanomaterials; (3) Self-assembly of nanomaterials, such as microemulsions and micelles, and their applications; (4) Bioinspired nanostructured materials-structure, properties, and applications; (5) Design of active, soft functional interfaces with unique properties for sensors, catalysts, and biomedical assays; and (6) Nanoscale elements in soft nanoscale devices for applications in analytical and biomedical sciences. This book describes highlights in nanotechnology based on state-of-the-art principles in colloid and interface science, demonstrating how great progress in the various branches of nanotechnology can be achieved. The application of these principles allows for the development of new experimental and theoretical tools.
Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthesis of nanostructured materials of well-defined size and function; (2) Analytical methods and tools for control and characterization of synthesized nanomaterials; (3) Self-assembly of nanomaterials, such as microemulsions and micelles, and their applications; (4) Bioinspired nanostructured materials-structure, properties, and applications; (5) Design of active, soft functional interfaces with unique properties for sensors, catalysts, and biomedical assays; and (6) Nanoscale elements in soft nanoscale devices for applications in analytical and biomedical sciences. This book describes highlights in nanotechnology based on state-of-the-art principles in colloid and interface science, demonstrating how great progress in the various branches of nanotechnology can be achieved. The application of these principles allows for the development of new experimental and theoretical tools.
Computational Methods for Complex Liquid-Fluid Interfaces highlights key computational challenges involved in the two-way coupling of complex liquid-fluid interfaces. The book covers a variety of cutting-edge experimental and computational techniques ranging from macro- to meso- and microscale approaches (including pivotal applications). As examples, the text: defines the most important interfacial quantities and their experimental investigations, providing theoretical background and detailed solutions, describes vital techniques used in interfacial flow problems, such as modern meshless numerical methods and conventional computational fluid dynamics methods, and discusses the technicalities of correctly using the computational methods developed for interfacial flows, as well as the simulation of interesting interfacial flow physics. Edited and authored by leading scientists and researchers, Computational Methods for Complex Liquid-Fluid Interfaces offers an authoritative and state-of-the-art overview of computational methodologies and simulation techniques for the quantification of interfacial quantities.
This book describes in detail the scientific philosophy of the formation and stabilization-destabilization of foams. It presents all hierarchical steps of a foam, starting from the properties of adsorption layers formed by foaming agents, discussing the properties of foam films as the building blocks of a foam, and then describing details of real foams, including many fields of application. The information presented in the book is useful to people working on the formulation of foams or attempting to avoid or destruct foams in unwanted situations.
Computational Methods for Complex Liquid-Fluid Interfaces highlights key computational challenges involved in the two-way coupling of complex liquid-fluid interfaces. The book covers a variety of cutting-edge experimental and computational techniques ranging from macro- to meso- and microscale approaches (including pivotal applications). As examples, the text: defines the most important interfacial quantities and their experimental investigations, providing theoretical background and detailed solutions, describes vital techniques used in interfacial flow problems, such as modern meshless numerical methods and conventional computational fluid dynamics methods, and discusses the technicalities of correctly using the computational methods developed for interfacial flows, as well as the simulation of interesting interfacial flow physics. Edited and authored by leading scientists and researchers, Computational Methods for Complex Liquid-Fluid Interfaces offers an authoritative and state-of-the-art overview of computational methodologies and simulation techniques for the quantification of interfacial quantities.
|
You may like...
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,907
Discovery Miles 49 070
Computational Explorations in Cognitive…
Randall C. O'Reilly, Yuko Munakata
Paperback
R2,554
Discovery Miles 25 540
Microwave Assisted Chemistry Experiments…
B R Prashantha Kumar, T Durai Ananda Kumar, …
Hardcover
R1,278
Discovery Miles 12 780
|