Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
This volume is concerned with the crystal growth, optical
properties, and optical device application of the self-formed
quantum dot, which is one of the major current subjects in the
semiconductor research field.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Defects in ion-implanted semiconductors are important and will
likely gain increased importance as annealing temperatures are
reduced with successive IC generations. Novel implant approaches,
such as MdV implantation, create new types of defects whose origin
and annealing characteristics will need to be addressed.
Publications in this field mainly focus on the effects of ion
implantation on the material and the modification in the implanted
layer after high temperature annealing. The editors of this volume
and Volume 45 focus on the physics of the annealing kinetics of the
damaged layer. An overview of characterization tehniques and a
critical comparison of the information on annealing kinetics is
also presented.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The"Willardson and Beer"Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
Volume 41 includes an in-depth review of the most important,
high-speed switches made with heterojunction technology. This
volume is aimed at the graduate student or working researcher who
needs a broad overview andan introduction to current literature.
|
You may like...
|