|
Showing 1 - 3 of
3 matches in All Departments
The book consists of thirty lectures on diverse topics, covering
much of the mathematical landscape rather than focusing on one
area. The reader will learn numerous results that often belong to
neither the standard undergraduate nor graduate curriculum and will
discover connections between classical and contemporary ideas in
algebra, combinatorics, geometry, and topology. The reader's effort
will be rewarded in seeing the harmony of each subject. The common
thread in the selected subjects is their illustration of the unity
and beauty of mathematics. Most lectures contain exercises, and
solutions or answers are given to selected exercises. A special
feature of the book is an abundance of drawings (more than four
hundred), artwork by an accomplished artist, and about a hundred
portraits of mathematicians. Almost every lecture contains
surprises for even the seasoned researcher.
Mathematical billiards describe the motion of a mass point in a
domain with elastic reflections off the boundary or, equivalently,
the behavior of rays of light in a domain with ideally reflecting
boundary. From the point of view of differential geometry, the
billiard flow is the geodesic flow on a manifold with boundary.
This book is devoted to billiards in their relation with
differential geometry, classical mechanics, and geometrical optics.
Topics covered include variational principles of billiard motion,
symplectic geometry of rays of light and integral geometry,
existence and nonexistence of caustics, optical properties of
conics and quadrics and completely integrable billiards, periodic
billiard trajectories, polygonal billiards, mechanisms of chaos in
billiard dynamics, and the lesser-known subject of dual (or outer)
billiards.The book is based on an advanced undergraduate topics
course. Minimum prerequisites are the standard material covered in
the first two years of college mathematics (the entire calculus
sequence, linear algebra). However, readers should show some
mathematical maturity and rely on their mathematical common sense.
A unique feature of the book is the coverage of many diverse topics
related to billiards, for example, evolutes and involutes of plane
curves, the four-vertex theorem, a mathematical theory of rainbows,
distribution of first digits in various sequences, Morse theory,
the Poincare recurrence theorem, Hilbert's fourth problem, Poncelet
porism, and many others. There are approximately 100 illustrations.
The book is suitable for advanced undergraduates, graduate
students, and researchers interested in ergodic theory and
geometry.
Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er
elastisch zuruckprallt? Welchen Weg nimmt ein Lichtstrahl in einem
Gebiet mit ideal reflektierenden Randern? Anhand dieser und
ahnlicher Fragen stellt das vorliegende Buch Zusammenhange zwischen
Billard und Differentialgeometrie, klassischer Mechanik sowie
geometrischer Optik her. Dabei beschaftigt sich das Buch unter
anderem mit dem Variationsprinzip beim mathematischen Billard, der
symplektischen Geometrie von Lichtstrahlen, der Existenz oder
Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und
dem Mechanismus fur Chaos bei der Billarddynamik. Erganzend wartet
dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die
sich verwandten Themen widmen, darunter der Vierfarbensatz, die
mathematisch-physikalische Beschreibung von Regenbogen, der
poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der
Schliessungssatz von Poncelet.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R391
R362
Discovery Miles 3 620
Loot
Nadine Gordimer
Paperback
(2)
R391
R362
Discovery Miles 3 620
The Creator
John David Washington, Gemma Chan, …
DVD
R347
Discovery Miles 3 470
|