![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
The presence of considerable time delays in the dynamics of many industrial processes, leading to difficult problems in the associated closed-loop control systems, is a well-recognized phenomenon. The performance achievable in conventional feedback control systems can be significantly degraded if an industrial process has a relatively large time delay compared with the dominant time constant. Under these circumstances, advanced predictive control is necessary to improve the performance of the control system significantly.The book is a focused treatment of the subject matter, including the fundamentals and some state-of-the-art developments in the field of predictive control. Three main schemes for advanced predictive control are addressed in this book:- Smith Predictive Control;- Generalised Predictive Control;- a form of predictive control based on Finite Spectrum Assignment.A substantial part of the book addresses application issues in predictive control, providing several interesting case studies for more application-oriented readers. Thus, while the book is written to serve as an advanced control reference on predictive control for researchers, postgraduates and senior undergraduates, it should be equally useful to those industrial practitioners who are keen to explore the use of advanced predictive control in real problems. The prerequisite for gaining maximum benefit from this book is a basic knowledge of control systems, such as that imparted by a first undergraduate course on control systems engineering.
This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: * piezoelectric actuators * fine movement control * gantry-stage control * interpolation of quadrature encoder signals * geometrical error modeling for single-, dual- and general-XY-axis stages.
This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: piezoelectric actuators fine movement control gantry-stage control interpolation of quadrature encoder signals geometrical error modeling for single-, dual- and general-XY-axis stages."
This focused treatment includes the fundamentals and some state-of-the-art developments in the field of predictive control. A substantial part of the book addresses application issues in predictive control, providing several interesting case studies for more application-oriented readers.
Control systems include many components, such as transducers, sensors, actuators and mechanical parts. These components are required to be operated under some specific conditions. However, due to prolonged operations or harsh operating environment, the properties of these devices may degrade to an unacceptable level, causing more regular fault occurrences. It is therefore necessary to diagnose faults and provide the fault-accommodation control which compensates for the fault of the component by substituting a configuration of redundant elements so that the system continues to operate satisfactorily. In this book, we present a result of several years of work in the area of fault diagnosis and fault-accommodation control. It aims at information estimate methods when faults occur. The book uses the model built from the plant or process, to detect and isolate failures, in contrast to traditional hardware or statistical technologies dealing with failures. It presents model-based learning and design technologies for fault detection, isolation and identification as well as fault-tolerant control. These models are also used to analyse the fault detectability and isolability conditions and discuss the stability of the closed-loop system. It is intended to report new technologies in the area of fault diagnosis, covering fault analysis and control strategies of design for various applications. The book addresses four main schemes: modelling of actuator or sensor faults; fault detection and isolation; fault identification, and fault reconfiguration (accommodation) control. It also covers application issues in the monitoring control of actuators, providing several interesting case studies for more application-oriented readers.
|
![]() ![]() You may like...
|