0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.): Bir Bhanu, Sungkee Lee Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.)
Bir Bhanu, Sungkee Lee
R4,517 Discovery Miles 45 170 Ships in 10 - 15 working days

Image segmentation is generally the first task in any automated image understanding application, such as autonomous vehicle navigation, object recognition, photointerpretation, etc. All subsequent tasks, such as feature extraction, object detection, and object recognition, rely heavily on the quality of segmentation. One of the fundamental weaknesses of current image segmentation algorithms is their inability to adapt the segmentation process as real-world changes are reflected in the image. Only after numerous modifications to an algorithm's control parameters can any current image segmentation technique be used to handle the diversity of images encountered in real-world applications. Genetic Learning for Adaptive Image Segmentation presents the first closed-loop image segmentation system that incorporates genetic and other algorithms to adapt the segmentation process to changes in image characteristics caused by variable environmental conditions, such as time of day, time of year, weather, etc. Image segmentation performance is evaluated using multiple measures of segmentation quality. These quality measures include global characteristics of the entire image as well as local features of individual object regions in the image. This adaptive image segmentation system provides continuous adaptation to normal environmental variations, exhibits learning capabilities, and provides robust performance when interacting with a dynamic environment. This research is directed towards adapting the performance of a well known existing segmentation algorithm (Phoenix) across a wide variety of environmental conditions which cause changes in the image characteristics. The book presents a large number of experimental results and compares performance with standard techniques used in computer vision for both consistency and quality of segmentation results. These results demonstrate, (a) the ability to adapt the segmentation performance in both indoor and outdoor color imagery, and (b) that learning from experience can be used to improve the segmentation performance over time.

Genetic Learning for Adaptive Image Segmentation (Paperback, Softcover reprint of the original 1st ed. 1994): Bir Bhanu,... Genetic Learning for Adaptive Image Segmentation (Paperback, Softcover reprint of the original 1st ed. 1994)
Bir Bhanu, Sungkee Lee
R4,349 Discovery Miles 43 490 Ships in 10 - 15 working days

Image segmentation is generally the first task in any automated image understanding application, such as autonomous vehicle navigation, object recognition, photointerpretation, etc. All subsequent tasks, such as feature extraction, object detection, and object recognition, rely heavily on the quality of segmentation. One of the fundamental weaknesses of current image segmentation algorithms is their inability to adapt the segmentation process as real-world changes are reflected in the image. Only after numerous modifications to an algorithm's control parameters can any current image segmentation technique be used to handle the diversity of images encountered in real-world applications. Genetic Learning for Adaptive Image Segmentation presents the first closed-loop image segmentation system that incorporates genetic and other algorithms to adapt the segmentation process to changes in image characteristics caused by variable environmental conditions, such as time of day, time of year, weather, etc. Image segmentation performance is evaluated using multiple measures of segmentation quality. These quality measures include global characteristics of the entire image as well as local features of individual object regions in the image. This adaptive image segmentation system provides continuous adaptation to normal environmental variations, exhibits learning capabilities, and provides robust performance when interacting with a dynamic environment. This research is directed towards adapting the performance of a well known existing segmentation algorithm (Phoenix) across a wide variety of environmental conditions which cause changes in the image characteristics. The book presents a large number of experimental results and compares performance with standard techniques used in computer vision for both consistency and quality of segmentation results. These results demonstrate, (a) the ability to adapt the segmentation performance in both indoor and outdoor color imagery, and (b) that learning from experience can be used to improve the segmentation performance over time.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Revolutionizing Digital Healthcare…
Yuk Ming Tang, Ka Yin Chau, … Hardcover R8,630 Discovery Miles 86 300
Hydroponics Growing System - Discover…
Andrea M Wilson Hardcover R820 R715 Discovery Miles 7 150
Engaging the Soul of Youth Culture…
Walt Mueller Paperback R700 R621 Discovery Miles 6 210
The Loveless Family - Getting Past…
Jon P. Bloch Hardcover R1,680 Discovery Miles 16 800
SHEroes of the Bible
Lauren L Nelson Paperback R400 Discovery Miles 4 000
BTEC First Construction and the Built…
Simon Topliss Paperback R1,098 Discovery Miles 10 980
Paul Morphy, the Chess Champion - His…
Frederick Milnes Edge Hardcover R567 Discovery Miles 5 670
Handbook of Biofuels Production
Rafael Luque, Carol Sze Ki Lin, … Hardcover R7,005 R6,463 Discovery Miles 64 630
Chess Openings - A Beginner's Guide to…
Sasha Ivanov Hardcover R601 R544 Discovery Miles 5 440
Nanotechnology in Civil Infrastructure…
Kasthurirangan Gopalakrishnan, Bjorn Birgisson, … Hardcover R2,911 Discovery Miles 29 110

 

Partners