0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.): Bir Bhanu, Sungkee Lee Genetic Learning for Adaptive Image Segmentation (Hardcover, 1994 ed.)
Bir Bhanu, Sungkee Lee
R4,166 Discovery Miles 41 660 Ships in 18 - 22 working days

Image segmentation is generally the first task in any automated image understanding application, such as autonomous vehicle navigation, object recognition, photointerpretation, etc. All subsequent tasks, such as feature extraction, object detection, and object recognition, rely heavily on the quality of segmentation. One of the fundamental weaknesses of current image segmentation algorithms is their inability to adapt the segmentation process as real-world changes are reflected in the image. Only after numerous modifications to an algorithm's control parameters can any current image segmentation technique be used to handle the diversity of images encountered in real-world applications. Genetic Learning for Adaptive Image Segmentation presents the first closed-loop image segmentation system that incorporates genetic and other algorithms to adapt the segmentation process to changes in image characteristics caused by variable environmental conditions, such as time of day, time of year, weather, etc. Image segmentation performance is evaluated using multiple measures of segmentation quality. These quality measures include global characteristics of the entire image as well as local features of individual object regions in the image. This adaptive image segmentation system provides continuous adaptation to normal environmental variations, exhibits learning capabilities, and provides robust performance when interacting with a dynamic environment. This research is directed towards adapting the performance of a well known existing segmentation algorithm (Phoenix) across a wide variety of environmental conditions which cause changes in the image characteristics. The book presents a large number of experimental results and compares performance with standard techniques used in computer vision for both consistency and quality of segmentation results. These results demonstrate, (a) the ability to adapt the segmentation performance in both indoor and outdoor color imagery, and (b) that learning from experience can be used to improve the segmentation performance over time.

Genetic Learning for Adaptive Image Segmentation (Paperback, Softcover reprint of the original 1st ed. 1994): Bir Bhanu,... Genetic Learning for Adaptive Image Segmentation (Paperback, Softcover reprint of the original 1st ed. 1994)
Bir Bhanu, Sungkee Lee
R4,012 Discovery Miles 40 120 Ships in 18 - 22 working days

Image segmentation is generally the first task in any automated image understanding application, such as autonomous vehicle navigation, object recognition, photointerpretation, etc. All subsequent tasks, such as feature extraction, object detection, and object recognition, rely heavily on the quality of segmentation. One of the fundamental weaknesses of current image segmentation algorithms is their inability to adapt the segmentation process as real-world changes are reflected in the image. Only after numerous modifications to an algorithm's control parameters can any current image segmentation technique be used to handle the diversity of images encountered in real-world applications. Genetic Learning for Adaptive Image Segmentation presents the first closed-loop image segmentation system that incorporates genetic and other algorithms to adapt the segmentation process to changes in image characteristics caused by variable environmental conditions, such as time of day, time of year, weather, etc. Image segmentation performance is evaluated using multiple measures of segmentation quality. These quality measures include global characteristics of the entire image as well as local features of individual object regions in the image. This adaptive image segmentation system provides continuous adaptation to normal environmental variations, exhibits learning capabilities, and provides robust performance when interacting with a dynamic environment. This research is directed towards adapting the performance of a well known existing segmentation algorithm (Phoenix) across a wide variety of environmental conditions which cause changes in the image characteristics. The book presents a large number of experimental results and compares performance with standard techniques used in computer vision for both consistency and quality of segmentation results. These results demonstrate, (a) the ability to adapt the segmentation performance in both indoor and outdoor color imagery, and (b) that learning from experience can be used to improve the segmentation performance over time.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Classical Traditions in Science Fiction
Brett M Rogers, Benjamin Eldon Stevens Hardcover R3,751 Discovery Miles 37 510
Lament - Studies in the Ancient…
Ann Suter Hardcover R2,809 Discovery Miles 28 090
Platter's South African Wine Guide 2026
Diners Club International Hardcover R429 R339 Discovery Miles 3 390
MANAGING THE PUBLIC SECTOR - A…
Andrew Massey Hardcover R3,403 Discovery Miles 34 030
Ginspired - The Ultimate Gin Cookbook
Heather E Wilson, Kate Dingwall Hardcover R1,031 Discovery Miles 10 310
This Will Not Pass - Trump, Biden, And…
Jonathan Martin, Alexander Burns Hardcover R721 R650 Discovery Miles 6 500
Chemistry and Technology of Wines and…
Karl M. Herstein, Thomas C Gregory Hardcover R883 Discovery Miles 8 830
Grape Culture, Wines, and Wine-Making…
Agoston Haraszthy Paperback R605 Discovery Miles 6 050
Refreshing Punch - Enjoy With Amazing…
Steve Potter Hardcover R789 R693 Discovery Miles 6 930
The Craft of Gin
Aaron J. Knoll, David T. Smith Hardcover R666 Discovery Miles 6 660

 

Partners