0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Deep Learning for Hydrometeorology and Environmental Science (Hardcover, 1st ed. 2021): Taesam Lee, Vijay P. Singh, Kyung Hwa... Deep Learning for Hydrometeorology and Environmental Science (Hardcover, 1st ed. 2021)
Taesam Lee, Vijay P. Singh, Kyung Hwa Cho
R3,374 Discovery Miles 33 740 Ships in 10 - 15 working days

This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited. Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare. This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN) as well as the conventional artificial neural network model.

Deep Learning for Hydrometeorology and Environmental Science (Paperback, 1st ed. 2021): Taesam Lee, Vijay P. Singh, Kyung Hwa... Deep Learning for Hydrometeorology and Environmental Science (Paperback, 1st ed. 2021)
Taesam Lee, Vijay P. Singh, Kyung Hwa Cho
R3,343 Discovery Miles 33 430 Ships in 10 - 15 working days

This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited. Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare. This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN) as well as the conventional artificial neural network model.

Statistical Downscaling for Hydrological and Environmental Applications (Hardcover): Taesam Lee, Vijay P. Singh Statistical Downscaling for Hydrological and Environmental Applications (Hardcover)
Taesam Lee, Vijay P. Singh
R3,561 Discovery Miles 35 610 Ships in 12 - 19 working days

Global climate change is typically understood and modeled using global climate models (GCMs), but the outputs of these models in terms of hydrological variables are only available on coarse or large spatial and time scales, while finer spatial and temporal resolutions are needed to reliably assess the hydro-environmental impacts of climate change. To reliably obtain the required resolutions of hydrological variables, statistical downscaling is typically employed. Statistical Downscaling for Hydrological and Environmental Applications presents statistical downscaling techniques in a practical manner so that both students and practitioners can readily utilize them. Numerous methods are presented, and all are illustrated with practical examples. The book is written so that no prior background in statistics is needed, and it will be useful to graduate students, college faculty, and researchers in hydrology, hydroclimatology, agricultural and environmental sciences, and watershed management. It will also be of interest to environmental policymakers at the local, state, and national levels, as well as readers interested in climate change and its related hydrologic impacts. Features: Examines how to model hydrological events such as extreme rainfall, floods, and droughts at the local, watershed level. Explains how to properly correct for significant biases with the observational data normally found in current Global Climate Models (GCMs). Presents temporal downscaling from daily to hourly with a nonparametric approach. Discusses the myriad effects of climate change on hydrological processes.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Shackled - One Woman's Dramatic Triumph…
Mariam Ibraheem, Eugene Bach Paperback R441 R418 Discovery Miles 4 180
Dala 759 #8 Flat Golden Taklon Brush
R23 Discovery Miles 230
Dala 582 #7 Round Hog Bristle Brush…
R13 Discovery Miles 130
Die Bewonderaar
Erla-Mari Diedericks Paperback  (1)
R300 R281 Discovery Miles 2 810
Fatal Gambit
David Lagercrantz Paperback R425 R379 Discovery Miles 3 790
The Whistleblower
Robert Peston Paperback R443 R407 Discovery Miles 4 070
Mimic
Daniel Cole Paperback R355 R194 Discovery Miles 1 940
Philosophy of Emotion - A Contemporary…
Christine Tappolet Paperback R1,179 Discovery Miles 11 790
Cleaning Up Your Mental Mess - 5 Simple…
Dr. Caroline Leaf Paperback  (3)
R299 R275 Discovery Miles 2 750
The Four Ages - Together with Essays on…
William Jackson Hardcover R10,431 Discovery Miles 104 310

 

Partners