Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
This book provides a comprehensive introduction to the mathematical
theory of nonlinear problems described by singular elliptic
equations. There are carefully analyzed logistic type equations
with boundary blow-up solutions and generalized Lane-Emden-Fowler
equations or Gierer-Meinhardt systems with singular nonlinearity in
anisotropic media. These nonlinear problems appear as mathematical
models in various branches of Physics, Mechanics, Genetics,
Economics, Engineering, and they are also relevant in Quantum
Physics and Differential Geometry.
Equilibrium Problems and Applications develops a unified variational approach to deal with single-valued, set-valued and quasi-equilibrium problems. The authors promote original results in relationship with classical contributions to the field of equilibrium problems. The content evolved in the general setting of topological vector spaces and it lies at the interplay between pure and applied nonlinear analysis, mathematical economics, and mathematical physics. This abstract approach is based on tools from various fields, including set-valued analysis, variational and hemivariational inequalities, fixed point theory, and optimization. Applications include models from mathematical economics, Nash equilibrium of non-cooperative games, and Browder variational inclusions. The content is self-contained and the book is mainly addressed to researchers in mathematics, economics and mathematical physics as well as to graduate students in applied nonlinear analysis.
|
You may like...
|